Abstract

Part mating gaps need to be effectively adjusted during the assembly of products and greatly affect the working performance. This paper develops an algorithm to calculate the dimensional and aerodynamic indexes affected by part mating gaps. Mating gaps are expressed by displacements of one contact surface, and indexes are evaluated by displacements of key surface, when the surface is ready to compare with the other. A graph that denotes contacts as nodes and related paths through the physical domain as lines is proposed to express assembly sequences and hierarchies. A variable is defined to combine the time set with the displacement set. Boolean algebraic theorems are extended to derive a compact expression for the contact graph that supports the organization of accumulations at different surfaces with propagations through physical domains. Demonstrations of this method using three products exhibit the general applicability, and the application shows that the performance deviations of the centrifugal fan and axial turbine are apparent. In particular, the isentropic efficiency is good with a certain probability, despite turbines having mating gaps. The algorithm benefits both design and assembly: design can be performed through the fluid domain, which is affected by the mating gaps, and when the parts are being adjusted, the selected tolerance limit allows engineers to monitor key surfaces to ensure good aerodynamic performance.

References

1.
Wang
,
L.
,
Xiong
,
C.
, and
Yang
,
Y.
,
2018
, “
A Novel Methodology of Reliability-Based Multidisciplinary Design Optimization Under Hybrid Interval and Fuzzy Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
439
457
. 10.1016/j.cma.2018.04.003
2.
Wang
,
Y.
,
Hao
,
P.
,
Guo
,
Z.
,
Liu
,
D.
, and
Gao
,
Q.
,
2020
, “
Reliability-Based Design Optimization of Complex Problems With Multiple Design Points via Narrowed Search Region
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061702
. 10.1115/1.4045420
3.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
. 10.1115/1.3072494
4.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2009
, “
Integration of Thermomechanical Strains Into Tolerancing Analysis
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
247
263
. 10.1007/s12008-009-0058-8
5.
Dow
,
E. A.
, and
Wang
,
Q.
,
2015
, “
The Implications of Tolerance Optimization on Compressor Blade Design
,”
ASME J. Turbomach.
,
137
(
10
), p.
101008
. 10.1115/1.4030791
6.
Guo
,
J.
,
Li
,
B.
,
Liu
,
Z.
,
Hong
,
J.
, and
Wu
,
X.
,
2016
, “
Integration of Geometric Variation and Part Deformation Into Variation Propagation of 3-D Assemblies
,”
Int. J. Prod. Res.
,
54
(
16
), pp.
5708
5721
. 10.1080/00207543.2016.1158881
7.
Ayad
,
A. F.
,
Abdalla
,
H. M.
, and
Aly
,
A. A.
,
2015
, “
Effect of Semi-Open Impeller Side Clearance on the Centrifugal Pump Performance Using CFD
,”
Aerosp. Sci. Technol.
,
47
, pp.
247
255
. 10.1016/j.ast.2015.09.033
8.
Chen
,
L.
,
Li
,
B.
, and
Jiang
,
Z.
,
2017
, “
Inspection of Assembly Error With Effect on Throat and Incidence for Turbine Blades
,”
J. Manuf. Syst.
,
43
(
Part 3
), pp.
366
374
. 10.1016/j.jmsy.2017.03.007
9.
Schlather
,
F.
,
Hoesl
,
V.
,
Oefele
,
F.
, and
Zaeh
,
M. F.
,
2018
, “
Tolerance Analysis of Compliant, Feature-Based Sheet Metal Structures for Fixtureless Assembly
,”
J. Manuf. Syst.
,
49
, pp.
25
35
. 10.1016/j.jmsy.2018.07.011
10.
Ceglarek
,
D.
, and
Shi
,
J.
,
2018
, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
773
780
.
11.
Li
,
Y.
,
Zhang
,
L.
, and
Wang
,
Y. Z.
,
2017
, “
An Optimal Method of Posture Adjustment in Aircraft Fuselage Joining Assembly With Engineering Constraints
,”
Chinese J. Aeronaut
,
30
(
6
), pp.
2016
2023
. 10.1016/j.cja.2017.05.006
12.
ASME
,
2009
,
“Dimensioning and Tolerancing,” ASME Standard Y14.5
.
13.
Huang
,
W.
,
Lin
,
J.
,
Bezdecny
,
M. R.
,
Kong
,
Z.
, and
Ceglarek
,
D.
,
2007
, “
Stream-of-Variation Modeling I: A Generic 3D Variation Model for Rigid Body Assembly in Single Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
821
831
. 10.1115/1.2738117
14.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Approaches for the Assembly Simulation of Skin Model Shapes
,”
Comput. Aided Des.
,
65
, pp.
18
33
. 10.1016/j.cad.2015.03.004
15.
Liu
,
J.
,
Shi
,
J.
, and
Hu
,
S. J.
,
2008
, “
Engineering-Driven Factor Analysis for Variation Source Identification in Multistage Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
041009
. 10.1115/1.2950064
16.
Zhang
,
T. Y.
, and
Shi
,
J. J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
. 10.1115/1.4033231
17.
Louhichi
,
B.
,
Tlija
,
M.
,
Benamara
,
A.
, and
Tahan
,
A.
,
2015
, “
An Algorithm for CAD Tolerancing Integration: Generation of Assembly Configurations According to Dimensional and Geometric Tolerances
,”
Comput. Aided Des.
,
62
, pp.
259
274
. 10.1016/j.cad.2014.07.002
18.
Wang
,
N.
, and
Ozsoy
,
T. M.
,
1993
, “
Automatic Generation of Tolerance Chains From Mating Relations Represented in Assembly Models
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
757
761
. 10.1115/1.2919265
19.
Wang
,
H.
,
Yang
,
J.
, and
Ceglarek
,
D. J.
,
2009
, “
A Graph-Based Data Structure for Assembly Dimensional Variation Control at a Preliminary Phase of Product Design
,”
Int. J. Comput. Integr. Manuf.
,
22
(
10
), pp.
948
961
. 10.1080/09511920902942855
20.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation for Design of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031005
. 10.1115/1.4023279
21.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
. 10.1115/1.2714570
22.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011005
. 10.1115/1.3046133
23.
Ni
,
J.
,
Tang
,
W.
, and
Xing
,
Y.
,
2014
, “
Three-Dimensional Precision Analysis With Rigid and Compliant Motions for Sheet Metal Assembly
,”
Int. J. Adv. Manu. Technol.
,
73
(
5
), pp.
805
819
. 10.1007/s00170-014-5832-5
24.
Ni
,
J.
,
Tang
,
W.
,
Xing
,
Y.
,
Ben
,
K.
, and
Li
,
M.
,
2016
, “
A Local-to-Global Dimensional Error Calculation Framework for the Riveted Assembly Using Finite-Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031004
. 10.1115/1.4031101
25.
Huang
,
Q.
, and
Shi
,
J.
,
2004
, “
Stream of Variation Modeling and Analysis of Serial-Parallel Multistage Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
611
618
. 10.1115/1.1765149
26.
Saravanan
,
A.
, and
Jerald
,
J.
,
2019
, “
Ontological Model-Based Optimal Determination of Geometric Tolerances in an Assembly Using the Hybridised Neural Network and Genetic Algorithm
,”
J. Eng. Des.
,
30
(
4–5
), pp.
180
198
. 10.1080/09544828.2019.1605585
27.
Jiang
,
Z.
, and
Wang
,
H.
,
2019
, “
Automatic Generation of Assembly Hierarchies for Products With Complex Liaison Relations
,”
Int. J. Comput. Integr. Manuf.
,
32
(
12
), pp.
1154
1169
. 10.1080/0951192X.2019.1690680
28.
Otto
,
C.
, and
Otto
,
A.
,
2014
, “
Multiple-Source Learning Precedence Graph Concept for the Automotive Industry
,”
Eur. J. Oper. Res.
,
234
(
1
), pp.
253
265
. 10.1016/j.ejor.2013.09.034
29.
Wang
,
W.
,
Chen
,
G.
,
Lin
,
Z.
, and
Lai
,
X.
,
2005
, “
Automated Hierarchical Assembly System Construction in Automobile Body Assembly Planning
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
347
351
. 10.1115/1.1829724
30.
Gu
,
T.
,
Xu
,
Z.
, and
Yang
,
Z.
,
2008
, “
Symbolic OBDD Representations for Mechanical Assembly Sequences
,”
Comput. Aided Des.
,
40
(
4
), pp.
411
421
. 10.1016/j.cad.2007.12.001
31.
Ou
,
L.
, and
Xu
,
X.
,
2013
, “
Relationship Matrix Based Automatic Assembly Sequence Generation From a CAD Model
,”
Comput. Aided Des.
,
45
(
7
), pp.
1053
1067
. 10.1016/j.cad.2013.04.002
32.
Bahubalendruni
,
M. R.
, and
Biswa
,
B. B.
,
2015
, “
A Novel Concatenation Method for Generating Optimal Robotic Assembly Sequences
,”
IMechE J. Mech. Eng. Sci., Part C
,
231
(
10
), pp.
1966
1977
. 10.1177/0954406215623813
33.
Ni
,
J.
,
Tang
,
W.
, and
Xing
,
Y.
,
2013
, “
A Simple Algebra for Fault Tree Analysis of Static and Dynamic Systems
,”
IEEE Trans. Reliab.
,
62
(
4
), pp.
846
861
. 10.1109/TR.2013.2285035
34.
Ni
,
J.
,
Liu
,
R.
, and
Sun
,
Y.
,
2020
, “
A Dynamic Dimensional Accumulation with Propagations of Part Mating Gaps for Series-Parallel Assembly Operations
,”
IMechE J. Mech. Eng. Sci., Part C.
10.1177/0954406220941893
35.
Ni
,
J.
,
Wu
,
K.
, and
Sun
,
Y.
,
2019
, “
Boolean Algebra-Based Dimensional Error Accumulation in Solid and Fluid Domain for Turbines
,”
ASME IMECE Variation Simulation and Design for Assembly
,
Salt Lake City, UT
,
Nov. 11–14
.
36.
Durikovic
,
R.
,
Kaneda
,
K.
, and
Yamashita
,
H.
,
1997
, “
Reconstructing a 3-D Structure With Multiple Deformable Solid Primitives
,”
Comput. Graphics
,
21
(
5
), pp.
611
624
. 10.1016/S0097-8493(97)00039-3
You do not currently have access to this content.