Abstract

Time-dependent system kinematic reliability of robotic manipulators, referring to the probability of the end-effector’s pose error falling into the specified safe boundary over the whole motion input, is of significant importance for its work performance. However, investigations regarding this issue are quite limited. Therefore, this work conducts time-dependent system kinematic reliability analysis defined with respect to the pose error for robotic manipulators based on the first-passage method. Central to the proposed method is to calculate the outcrossing rate. Given that the errors in robotic manipulators are very small, the closed-form solution to the covariance of the joint distribution of the pose error and its derivative is first derived by means of the Lie group theory. Then, by decomposing the outcrossing event of the pose error, calculating the outcrossing rate is transformed into a problem of determining the first-order moment of a truncated multivariate Gaussian. Then, based on the independent assumption that the outcrossing events occur independently, the analytical formula of the outcrossing rate is deduced for the stochastic kinematic process of robotic manipulators via taking advantage of the moment generating function of the multivariate Gaussian, accordingly leading to achievement of the time-dependent system kinematic reliability. Finally, a six-degrees-of-freedom (6-DOF) robotic manipulator is used to demonstrate the effectiveness of the proposed method by comparison with the Monte Carlo simulation and finite-difference-based outcrossing rate method.

References

1.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
. 10.1016/j.mechmachtheory.2012.08.009
2.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
. 10.1115/1.4044436
3.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
. 10.1016/j.mechmachtheory.2015.04.020
4.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
. 10.1115/1.4003539
5.
Zhao
,
Q.
,
Guo
,
J.
, and
Hong
,
J.
,
2020
, “
Time-Dependent System Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
152
, p.
103939
. 10.1016/j.mechmachtheory.2020.103939
6.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
. 10.1115/1.4046075
7.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
. 10.1007/s00158-013-0937-2
8.
Bhatti
,
P.
, and
Rao
,
S. S.
,
1988
, “
Reliability Analysis of Robot Manipulators
,”
J. Mech., Transm., Autom. Des.
,
110
(
2
), pp.
175
181
. 10.1115/1.3258923
9.
Shi
,
Z.
,
1994
, “
Reliability Analysis and Synthesis of Robot Manipulators
,”
Proceedings of Annual Reliability and Maintainability Symposium (RAMS)
,
Anaheim, CA
,
Jan. 24–27
,
IEEE
, pp.
201
205
.
10.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
. 10.1016/j.apm.2009.08.009
11.
Wang
,
W.
,
Wang
,
J.
,
Fu
,
J.-H.
, and
Lu
,
G.-D.
,
2019
, “
A Moment-Matching Based Method for the Analysis of Manipulator’s Repeatability of Positioning With Arbitrarily Distributed Joint Clearances
,”
Eksploatacja i Niezawodność
,
21
(
1
), pp.
10
20
.
12.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Transactions Reliability
,
69
(
2
), pp.
699
714
.
13.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Model.
,
52
, pp.
189
216
. 10.1016/j.apm.2020.01.005
14.
Bowling
,
A. P.
,
Renaud
,
J. E.
,
Newkirk
,
J. T.
,
Patel
,
N. M.
, and
Agarwal
,
H.
,
2007
, “
Reliability-Based Design Optimization of Robotic System Dynamic Performance
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
449
454
. 10.1115/1.2437804
15.
Li
,
H.-S.
,
Wang
,
T.
,
Yuan
,
J.-Y.
, and
Zhang
,
H.
,
2019
, “
A Sampling-Based Method for High-Dimensional Time-Variant Reliability Analysis
,”
Mech. Syst. Signal Processing
,
126
, pp.
505
520
. 10.1016/j.ymssp.2019.02.050
16.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2011
, “
An Importance Sampling Approach for Time-Dependent Reliability
,”
Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
New York
,
Aug. 28–31
, pp.
1077
1088
.
17.
Jiang
,
C.
,
Wei
,
X.
,
Huang
,
Z.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
. 10.1115/1.4035792
18.
Chen
,
J.-B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
. 10.1016/j.strusafe.2006.02.002
19.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
20.
Menz
,
M.
,
Gogu
,
C.
,
Dubreuil
,
S.
,
Bartoli
,
N.
, and
Morio
,
J.
,
2020
, “
Adaptive Coupling of Reduced Basis Modeling and Kriging Based Active Learning Methods for Reliability Analyses
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106771
. 10.1016/j.ress.2019.106771
21.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
22.
Hu
,
Z.
,
Zhu
,
Z.
, and
Du
,
X.
,
2018
, “
Time-Dependent System Reliability Analysis for Bivariate Responses
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mechanical Engineering
,
4
(
3
), p.
031002
.
23.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “Reliability Analysis of Systems Subject to First-Passage Failure,” https://ntrs.nasa.gov/citations/20100011340.
24.
Hu
,
Y.
,
Lu
,
Z.
,
Wei
,
N.
, and
Zhou
,
C.
,
2020
, “
A Single-Loop Kriging Surrogate Model Method by Considering the First Failure Instant for Time-Dependent Reliability Analysis and Safety Lifetime Analysis
,”
Mech. Syst. Signal Processing
,
145
, p.
106963
. 10.1016/j.ymssp.2020.106963
25.
Wang
,
W.
,
Gao
,
H.
,
Zhou
,
C.
, and
Zhang
,
Z.
,
2018
, “
Reliability Analysis of Motion Mechanism Under Three Types of Hybrid Uncertainties
,”
Mech. Mach. Theory
,
121
, pp.
769
784
. 10.1016/j.mechmachtheory.2017.12.010
26.
Zhang
,
J.
,
Wang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Probabilistic Synthesis for Function Generator Mechanisms
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1236
1250
. 10.1016/j.mechmachtheory.2011.04.008
27.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
. 10.1016/S0167-4730(02)00009-7
28.
Hagen
,
Ø
,
1992
, “
Conditional and Joint Failure Surface Crossing of Stochastic Processes
,”
J. Eng. Mech.
,
118
(
9
), pp.
1814
1839
. 10.1061/(ASCE)0733-9399(1992)118:9(1814)
29.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
. 10.1080/15732470701270058
30.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
. 10.1016/j.ress.2003.10.005
31.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First-Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
. 10.1115/1.3167691
32.
Hagen
,
Ø
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
. 10.1061/(ASCE)0733-9399(1991)117:10(2201)
33.
Ditlevsen
,
O.
,
1979
, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
,
7
(
4
), pp.
453
472
. 10.1080/03601217908905329
34.
Ditlevsen
,
O.
,
1983
, “
Gaussian Outcrossings From Safe Convex Polyhedrons
,”
J. Eng. Mech.
,
109
(
1
), pp.
127
148
. 10.1061/(ASCE)0733-9399(1983)109:1(127)
35.
Craig
,
J. J.
,
2009
,
Introduction to Robotics: Mechanics and Control, 3/E, Pearson Education
.
36.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists: Updated and Expanded Edition
,
Courier Dover Publications
.
37.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
. 10.1002/j.1538-7305.1944.tb00874.x
38.
Härdle
,
W.
, and
Simar
,
L.
,
2007
,
Applied Multivariate Statistical Analysis
,
Springer
,
New York
.
39.
Scott
,
M.
,
2013
,
Applied Stochastic Processes in Science and Engineering
,
Scribd.com
,
San Francisco, CA
.
40.
BG
,
M.
, and
Wilhelm
,
S.
,
2009
, “
Moments Calculation for the Double Truncated Multivariate Normal Density
,”
SSRN 1472153
.
41.
Genz
,
A.
, and
Bretz
,
F.
,
2009
,
Computation of Multivariate Normal and t Probabilities
,
Springer Science & Business Media
,
Berlin
.
42.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2008
, “
Nonparametric Second-Order Theory of Error Propagation on Motion Groups
,”
Int. J. Rob. Res.
,
27
(
11-12
), pp.
1258
1273
. 10.1177/0278364908097583
43.
Barfoot
,
T. D.
, and
Furgale
,
P. T.
,
2014
, “
Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
679
693
. 10.1109/TRO.2014.2298059
You do not currently have access to this content.