Abstract

This paper aims to provide a comprehensive review of the state-of-the-art modeling and optimization methods for multi-scale heterogeneous lattice structures (MSHLS) to further facilitate the more design freedom. In this survey, a design process including optimization and modeling for MSHLS is proposed. Material composition and multi-scale geometric modeling methods for representation of material and geometry information are separately discussed. Moreover, the optimization methods including multi-scale and multi-material optimization design methods, as well as the simulation methods suitable for MSHLS are, respectively, reviewed. Finally, the relationship, advantages, and disadvantages of MSHLS modeling and optimization methods are summarized with discussion and comparison, which provides a guidance to further take advantage of MSHLS to improve the performance and multifunctional purpose of production for software developers and researchers concerning the design approaches and strategies currently available.

References

1.
Angrish
,
A.
,
2014
, “
A Critical Analysis of Additive Manufacturing Technologies for Aerospace Applications
,”
Proceedings of 2014 IEEE Aerospace Conference
,
Big Sky, MT
, pp.
1
6
.
2.
Jardini
,
A. L.
,
Larosa
,
M. A.
,
Filho
,
R. M.
,
Zavaglia
,
C. A. D. C.
,
Bernardes
,
L. F.
,
Lambert
,
C. S.
,
Calderoni
,
D. R.
, and
Kharmandayan
,
P.
,
2014
, “
Cranial Reconstruction: 3D Biomodel and Custom-Built Implant Created Using Additive Manufacturing
,”
J. Cranio-Maxillofac. Surg.
,
42
(
8
), pp.
1877
1884
. 10.1016/j.jcms.2014.07.006
3.
Bourell
,
D. L.
,
Rosen
,
D. W.
, and
Leu
,
M. C.
,
2014
, “
The Roadmap for Additive Manufacturing and Its Impact
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
6
9
. 10.1089/3dp.2013.0002
4.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
. 10.1080/16864360.2007.10738493
5.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyping J.
,
22
(
3
), pp.
569
590
. 10.1108/RPJ-01-2015-0011
6.
Kumar
,
V.
, and
Dutta
,
D.
,
1998
, “
An Approach to Modeling and Representation of Heterogeneous Objects
,”
J. Mech. Des. Trans. ASME
,
120
(
4
), pp.
659
667
. 10.1115/1.2829329
7.
Li
,
Y.
,
Feng
,
Z.
,
Hao
,
L.
,
Huang
,
L.
,
Xin
,
C.
,
Wang
,
Y.
,
Bilotti
,
E.
,
Essa
,
K.
,
Zhang
,
H.
, and
Li
,
Z.
,
2020
, “
A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties
,”
Adv. Mater. Technol.
,
5
(
6
), p.
1900981
. 10.1002/admt.201900981
8.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
, and
Weisgraber
,
T.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
. 10.1038/nmat4694
9.
Zhang
,
B.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2016
, “
Additive Manufacturing of Functionally Graded Objects: A Review
,”
Proceedings of ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
.
10.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1267
1281
. 10.1007/s00158-016-1519-x
11.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graphics
,
36
(
5
), p.
164
. 10.1145/3072959.3095815
12.
Yan
,
X.
,
Huang
,
X.
,
Sun
,
G.
, and
Xie
,
Y. M.
,
2015
, “
Two-Scale Optimal Design of Structures With Thermal Insulation Materials
,”
Compos. Struct.
,
120
, pp.
358
365
. 10.1016/j.compstruct.2014.10.013
13.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
. 10.1016/0020-7683(94)90154-6
14.
Yang
,
P.
, and
Qian
,
X.
,
2007
, “
A B-Spline-Based Approach to Heterogeneous Objects Design and Analysis
,”
Comput. Aided Des.
,
39
(
2
), pp.
95
111
. 10.1016/j.cad.2006.10.005
15.
Liu
,
Y.
,
Zhou
,
M.
,
Tang
,
Y.
,
Zhao
,
Y.
, and
Zheng
,
G.
,
2019
, “
Material-Unit Network for Multi-Material-Property and Multiscale Components
,”
Comput.-Aided Des. Appl.
,
17
(
3
), pp.
547
560
. 10.14733/cadaps.2020.547-560
16.
Zhang
,
B.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2018
, “
Additive Manufacturing of Functionally Graded Material Objects: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041002
. 10.1115/1.4039683
17.
Hiller
,
J.
, and
Lipson
,
H.
,
2009
, “
Design and Analysis of Digital Materials for Physical 3D Voxel Printing
,”
Rapid Prototyping J.
,
15
(
2
), pp.
137
149
. 10.1108/13552540910943441
18.
Huang
,
P.
,
Li
,
Y.
,
Chen
,
Y.
, and
Zeng
,
J.
,
2016
, “
A Digital Material Design Framework for 3D-Printed Heterogeneous Objects
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Charlotte, NC
.
19.
Leung
,
Y.-S.
,
Kwok
,
T.-H.
,
Mao
,
H.
, and
Chen
,
Y.
,
2019
, “
Digital Material Design Using Tensor-Based Error Diffusion for Additive Manufacturing
,”
Comput.-Aided Des.
,
114
, pp.
224
235
. 10.1016/j.cad.2019.05.031
20.
Wang
,
S.
,
Chen
,
N.
,
Chen
,
C. S.
, and
Zhu
,
X.
,
2009
, “
Finite Element-Based Approach to Modeling Heterogeneous Objects
,”
Finite Elem. Anal. Des.
,
45
(
8–9
), pp.
592
596
. 10.1016/j.finel.2009.02.005
21.
You
,
Y. H.
,
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2015
, “
Adaptive Meshing for Finite Element Analysis of Heterogeneous Materials
,”
Comput. Aided Des.
,
62
, pp.
176
189
. 10.1016/j.cad.2014.11.011
22.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
. 10.1016/j.commatsci.2013.09.006
23.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2019
, “
A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in Matlab
,”
ASME J. Eng. Mater. Technol.
,
141
(
1
), p.
011005
. 10.1115/1.4040555
24.
Sun
,
W.
, and
Hu
,
X.
,
2002
, “
Reasoning Boolean Operation Based Modeling for Heterogeneous Objects
,”
Comput. Aided Des.
,
34
(
6
), pp.
481
488
. 10.1016/S0010-4485(01)00131-2
25.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
. 10.1006/jcph.2000.6581
26.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2004
, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
215
242
. 10.1016/j.cagd.2003.08.002
27.
Gupta
,
V.
, and
Tandon
,
P.
,
2015
, “
Heterogeneous Object Modeling With Material Convolution Surfaces
,”
Comput. Aided Design
,
62
, pp.
236
247
. 10.1016/j.cad.2014.12.005
28.
Tsukanov
,
I.
, and
Shapiro
,
V.
,
2005
, “
Meshfree Modeling and Analysis of Physical Fields in Heterogeneous Media
,”
Adv. Comput. Math.
,
23
(
1–2
), pp.
95
124
. 10.1007/s10444-004-1835-3
29.
Wang
,
M. Y.
, and
Wang
,
X.
,
2005
, “
A Level-set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput. Aided Des.
,
37
(
3
), pp.
321
337
. 10.1016/j.cad.2004.03.007
30.
Liu
,
J.
,
Chen
,
Q.
,
Zheng
,
Y.
,
Ahmad
,
R.
,
Tang
,
J.
, and
Ma
,
Y.
,
2019
, “
Level Set-Based Heterogeneous Object Modeling and Optimization
,”
Comput. Aided Des.
,
110
, pp.
50
68
. 10.1016/j.cad.2019.01.002
31.
Siu
,
Y. K.
, and
Tan
,
S. T.
,
2002
, “
‘Source-based’ Heterogeneous Solid Modeling
,”
Comput. Aided Des.
,
34
(
1
), pp.
41
55
. 10.1016/S0010-4485(01)00046-X
32.
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
Multi-directional Blending for Heterogeneous Objects
,”
Comput. Aided Des.
,
43
(
8
), pp.
863
875
. 10.1016/j.cad.2011.04.002
33.
Leung
,
Y.-S.
,
Mao
,
H.
, and
Chen
,
Y.
,
2018
, “
Approximate Functionally Graded Materials for Multi-Material Additive Manufacturing
,”
Proceedings of ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
.
34.
Samanta
,
K.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2014
, “
Optimized Normal and Distance Matching for Heterogeneous Object Modeling
,”
Comput. Ind. Eng.
,
69
(
1
), pp.
1
11
. 10.1016/j.cie.2013.12.010
35.
Sasaki
,
Y.
,
Takezawa
,
M.
,
Kim
,
S.
,
Kawaharada
,
H.
, and
Maekawa
,
T.
,
2017
, “
Adaptive Direct Slicing of Volumetric Attribute Data Represented by Trivariate B-Spline Functions
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
1791
1807
. 10.1007/s00170-016-9800-0
36.
Yoo
,
D. J.
,
2013
, “
Heterogeneous Object Modeling Using the Radial Basis Functions
,”
Int. J. Precis. Eng. Manuf.
,
14
(
7
), pp.
1133
1140
. 10.1007/s12541-013-0154-3
37.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2005
, “
A Hierarchical Representation for Heterogeneous Object Modeling
,”
Comput. Aided Des.
,
37
(
3
), pp.
307
319
. 10.1016/j.cad.2004.03.006
38.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2017
, “
A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021007
. 10.1115/1.4034999
39.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2016
, “
Material Feature Representation and Identification With Composite Surfacelets
,”
J. Comput. Des. Eng.
,
3
(
4
), pp.
370
384
. 10.1016/j.jcde.2016.06.005
40.
Jeong
,
N.
, and
Rosen
,
D. W.
,
2014
, “
Microstructure Feature Recognition for Materials Using Surfacelet-Based Methods for Computer-Aided Design-Material Integration
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061021
. 10.1115/1.4028621
41.
Wang
,
Y.
, and
Rosen
,
D. W.
,
2010
, “
Multiscale Heterogeneous Modeling With Surfacelets
,”
Comput.-Aided Des. Appl.
,
7
(
5
), pp.
759
776
. 10.3722/cadaps.2010.759-776
42.
Raabe
,
D.
,
Scheffler
,
M.
,
Kremer
,
K.
,
Thiel
,
W.
,
Neugebauer
,
J.
, and
Jansen
,
M.
,
2009
, Multi-Scale Modeling in Materials Science and Engineering.
43.
Schombert
,
J.
,
2018
, “Quantum Gravity,” http://abyss.uoregon.edu/∼js/21st_century_science/lectures/lec17.html, Accessed Dec. 23, 2019.
44.
Prada
,
D.
,
Galvis
,
A.
, and
Sollero
,
P.
,
2017
, “
Superficial 3D Mesh Generation Process Using Multimedia Software for Multiscale Bone Analysis
,”
International Conference on Boundary Element and Meshless Techniques
,
Bucharest, Romania
, p.
126
.
45.
Engquist
,
B.
,
Lötstedt
,
P.
, and
Runborg
,
O.
,
2005
,
Multiscale Methods in Science and Engineering
,
Springer
,
New York
.
46.
Matouš
,
K.
,
Geers
,
M. G.
,
Kouznetsova
,
V. G.
, and
Gillman
,
A.
,
2017
, “
A Review of Predictive Nonlinear Theories for Multiscale Modeling of Heterogeneous Materials
,”
J. Comput. Phys.
,
330
, pp.
192
220
. 10.1016/j.jcp.2016.10.070
47.
Youssef
,
B. B.
,
2013
, “
Parallelization of a Bio-Inspired Computational Model for the Simulation of 3-D Multicellular Tissue Growth
,”
Procedia Comput. Sci.
,
20
, pp.
391
398
. 10.1016/j.procs.2013.09.292
48.
Sacks
,
M. S.
,
Khalighi
,
A.
,
Rego
,
B.
,
Ayoub
,
S.
, and
Drach
,
A.
,
2017
, “
On the Need for Multi-Scale Geometric Modelling of the Mitral Heart Valve
,”
Healthc Tech Lett
,
4
(
5
), pp.
150
150
.
49.
Google
,
2019
, “Developer Guide: Maps Static API,” https://developers.google.com/maps/documentation/maps-static/dev-guide, Accessed June 5, 2019.
50.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
. 10.1115/1.4037305
51.
Zhang
,
H.-W.
,
Wu
,
J.-K.
,
,
J.
, and
Fu
,
Z.-D.
,
2010
, “
Extended Multiscale Finite Element Method for Mechanical Analysis of Heterogeneous Materials
,”
Acta Mech. Sin.
,
26
(
6
), pp.
899
920
. 10.1007/s10409-010-0393-9
52.
Marschner
,
S.
, and
Shirley
,
P.
,
2015
,
Fundamentals of Computer Graphics
,
CRC Press
,
Boca Raton, FL
.
53.
Luebke
,
D.
,
Reddy
,
M.
,
Cohen
,
J. D.
,
Varshney
,
A.
,
Watson
,
B.
, and
Huebner
,
R.
,
2003
,
Level of Detail for 3D Graphics
,
Morgan Kaufmann
,
Burlington, MA
.
54.
PTC
,
2019
, “Material Homogenization for Lattice Simulation in Additive Manufacturing,” https://support.ptc.com/help/creo/creo_pma/r6.0/usascii/whats_new_pma/addmanu-material_homogenization_lattice_simulation.html, Accessed Oct. 22, 2019.
55.
Borrmann
,
A.
,
Kolbe
,
T. H.
,
Donaubauer
,
A.
,
Steuer
,
H.
,
Jubierre
,
J. R.
, and
Flurl
,
M.
,
2015
, “
Multi-Scale Geometric-Semantic Modeling of Shield Tunnels for GIS and BIM Applications
,”
Comput.-Aided Civil Infrastruct. Eng.
,
30
(
4
), pp.
263
281
. 10.1111/mice.12090
56.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
. 10.1016/j.procir.2012.07.108
57.
Connell
,
E.
,
2011
,
3D for Graphic Designers
,
John Wiley & Sons
,
New York
.
58.
Limper
,
M.
,
Jung
,
Y.
,
Behr
,
J.
, and
Alexa
,
M.
,
2013
, “
The Pop Buffer: Rapid Progressive Clustering by Geometry Quantization
,”
Computer Graphics Forum
,
32
(
7
), pp.
197
206
. 10.1111/cgf.12227
59.
Gregory
,
J.
,
2017
,
Game Engine Architecture
,
AK Peters/CRC Press
,
Boca Raton, FL
.
60.
Liu
,
X.
, and
Shapiro
,
V.
,
2018
, “
Multiscale Shape–Material Modeling by Composition
,”
Comput.-Aided Des.
,
102
, pp.
194
203
. 10.1016/j.cad.2018.04.024
61.
Kaufman
,
A.
,
Cohen
,
D.
, and
Yagel
,
R.
,
1993
, “
Volume Graphics
,”
Computer
,
26
(
7
), pp.
51
64
. 10.1109/MC.1993.274942
62.
Cohen-Or
,
D.
, and
Kaufman
,
A.
,
1995
, “
Fundamentals of Surface Voxelization
,”
Graphical Models Image Process.
,
57
(
6
), pp.
453
461
. 10.1006/gmip.1995.1039
63.
He
,
T.
,
Hong
,
L.
,
Kaufman
,
A.
,
Varshney
,
A.
, and
Wang
,
S.
, “
Voxel Based Object Simplification
,”
Proceedings of the 6th Conference on Visualization’95
,
IEEE Computer Society
, p.
296
.
64.
Nooruddin
,
F. S.
, and
Turk
,
G.
,
2003
, “
Simplification and Repair of Polygonal Models Using Volumetric Techniques
,”
IEEE Trans. Visualization Comput. Graphics
,
9
(
2
), pp.
191
205
. 10.1109/TVCG.2003.1196006
65.
Laine
,
S.
, and
Karras
,
T.
,
2010
, “
Efficient Sparse Voxel Octrees
,”
IEEE Trans. Visualization Comput. Graphics
,
17
(
8
), pp.
1048
1059
. 10.1109/TVCG.2010.240
66.
Telea
,
A.
, and
Jalba
,
A.
, “
Voxel-based Assessment of Printability of 3D Shapes
,”
Proceedings of the International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing
,
Springer
, pp.
393
404
.
67.
Wang
,
P.-S.
,
Liu
,
Y.
,
Guo
,
Y.-X.
,
Sun
,
C.-Y.
, and
Tong
,
X.
,
2017
, “
O-cnn: Octree-Based Convolutional Neural Networks for 3D Shape Analysis
,”
ACM Trans. Graphics
,
36
(
4
), p.
72
. 10.1145/3072959.3073608
68.
Liu
,
S.
,
Giles
,
L.
, and
Ororbia
,
A.
,
2018
, “
Learning a Hierarchical Latent-Variable Model of 3d Shapes
,”
Proceedings of 2018 International Conference on 3D Vision (3DV)
,
Verona, Italy
, IEEE, pp.
542
551
.
69.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
, “
3D Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
1912
1920
.
70.
Marcus
,
R.
,
2017
, “Level-of-Detail Independent Voxel-Based Surface Approximations.”
71.
Tian
,
F.
,
Hua
,
W.
,
Dong
,
Z.
, and
Bao
,
H.
,
2010
, “
Adaptive Voxels: Interactive Rendering of Massive 3D Models
,”
Visual Comput.
,
26
(
6–8
), pp.
409
419
. 10.1007/s00371-010-0465-7
72.
Seemann
,
P.
,
Fuhrmann
,
S.
,
Guthe
,
S.
,
Langguth
,
F.
, and
Goesele
,
M.
,
2016
, “Simplification of Multi-Scale Geometry Using Adaptive Curvature Fields,” arXiv preprint arXiv:1610.07368.
73.
Kauker
,
D.
,
Falk
,
M.
,
Reina
,
G.
,
Ynnerman
,
A.
, and
Ertl
,
T.
,
2016
, “
VoxLink—Combining Sparse Volumetric Data and Geometry for Efficient Rendering
,”
Comput. Visual Media
,
2
(
1
), pp.
45
56
. 10.1007/s41095-016-0034-8
74.
Aremu
,
A. O.
,
Brennan-Craddock
,
J. P. J.
,
Panesar
,
A.
,
Ashcroft
,
I. A.
,
Hague
,
R. J. M.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
. 10.1016/j.addma.2016.10.006
75.
Xu
,
B.
,
Nakai
,
K.
,
Noda
,
T.
, and
Takaine
,
T.
,
2013
, “
A Three-Dimensional Soil–Water Coupled FE Analysis of Hollow Cylinder Test Concerning Non-Uniform Deformation
,”
Soils Found.
,
53
(
6
), pp.
923
936
. 10.1016/j.sandf.2013.10.011
76.
Strand
,
R.
, “
Surface Skeletons in Grids With Non-Cubic Voxels
,”
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004
,
IEEE
, pp.
548
551
.
77.
Sossou
,
G.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Qi
,
H. J.
,
Gomes
,
S.
, and
Montavon
,
G.
,
2019
, “
Design for 4D Printing: A Voxel-Based Modeling and Simulation of Smart Materials
,”
Mater. Des.
,
175
, p.
107798
. 10.1016/j.matdes.2019.107798
78.
Rom
,
M.
, and
Brakhage
,
K.-H.
,
2011
,
Volume Mesh Generation for Numerical Flow Simulations Using Catmull-Clark and Surface Approximation Methods
,
Inst. für Geometrie und Praktische Mathematik
,
Aachen, Germany
.
79.
Feng
,
X.
,
Xia
,
K.
,
Chen
,
Z.
,
Tong
,
Y.
, and
Wei
,
G. W.
,
2013
, “
Multiscale Geometric Modeling of Macromolecules II: Lagrangian Representation
,”
J. Comput. Chem.
,
34
(
24
), pp.
2100
2120
. 10.1002/jcc.23364
80.
Tewari
,
G.
,
Gotsman
,
C.
, and
Gortler
,
S. J.
,
2006
, “
Meshing Genus-1 Point Clouds Using Discrete One-Forms
,”
Comput. Graphics
,
30
(
6
), pp.
917
926
. 10.1016/j.cag.2006.08.019
81.
Fuchs
,
R.
,
Welker
,
V.
, and
Hornegger
,
J.
,
2010
, “
Non-convex Polyhedral Volume of Interest Selection
,”
Comput. Med. Imaging Graphics
,
34
(
2
), pp.
105
113
. 10.1016/j.compmedimag.2009.07.002
82.
Gortler
,
S.
,
Gotsman
,
C.
, and
Thurston
,
D.
,
2006
, “
Discrete One-Forms on Meshes and Applications to 3D Mesh Parameterization
,”
Comput. Aided Geom. Des.
,
23
(
2
), pp.
83
112
. 10.1016/j.cagd.2005.05.002
83.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graphical Models
,
73
(
5
), pp.
165
181
. 10.1016/j.gmod.2011.03.001
84.
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
A Hybrid Geometric Modeling Method for Lattice Structures Fabricated by Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
4011
4030
. 10.1007/s00170-019-03308-x
85.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
. 10.1002/adma.201701850
86.
Tang
,
Y.
,
Kurtz
,
A.
, and
Zhao
,
Y. F.
,
2015
, “
Bidirectional Evolutionary Structural Optimization (BESO) Based Design Method for Lattice Structure to be Fabricated by Additive Manufacturing
,”
Comput.-Aided Des.
,
69
, pp.
91
101
. 10.1016/j.cad.2015.06.001
87.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graphics
,
35
(
4
), p.
44
. 10.1145/2897824.2925922
88.
Vasiliev
,
V. V.
,
Barynin
,
V. A.
, and
Razin
,
A. F.
,
2012
, “
Anisogrid Composite Lattice Structures—Development and Aerospace Applications
,”
Compos. Struct.
,
94
(
3
), pp.
1117
1127
. 10.1016/j.compstruct.2011.10.023
89.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
, and
Wang
,
C. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2457
2483
. 10.1007/s00158-018-1994-3
90.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2014
, “
Build-to-last: Strength to Weight 3D Printed Objects
,”
ACM Trans. Graphics
,
33
(
4
), pp.
1
10
. 10.1145/2601097.2601168
91.
Kim
,
H. S.
,
2000
, “
On the Rule of Mixtures for the Hardness of Particle Reinforced Composites
,”
Mater. Sci. Eng. A
,
289
(
1–2
), pp.
30
33
. 10.1016/S0921-5093(00)00909-6
92.
Sola
,
A.
,
Bellucci
,
D.
, and
Cannillo
,
V.
,
2016
, “
Functionally Graded Materials for Orthopedic Applications—An Update on Design and Manufacturing
,”
Biotechnol. Adv.
,
34
(
5
), pp.
504
531
. 10.1016/j.biotechadv.2015.12.013
93.
Sossou
,
G.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Qi
,
H. J.
,
Gomes
,
S.
, and
Montavon
,
G.
,
2019
, “
Design for 4D Printing: Modeling and Computation of Smart Materials Distributions
,”
Mater. Des.
,
181
, p.
108074
. 10.1016/j.matdes.2019.108074
94.
Allaire
,
G.
, and
Habibi
,
Z.
,
2013
, “
Homogenization of a Conductive, Convective, and Radiative Heat Transfer Problem in a Heterogeneous Domain
,”
SIAM J. Math. Anal.
,
45
(
3
), pp.
1136
1178
. 10.1137/110849821
95.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
. 10.1016/S0045-7949(98)00131-X
96.
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2016
, “
Design of Lattice Structures With Controlled Anisotropy
,”
Mater. Des.
,
93
, pp.
443
447
. 10.1016/j.matdes.2016.01.007
97.
Dong
,
G.
,
Tang
,
Y.
,
Li
,
D.
, and
Zhao
,
Y. F.
,
2020
, “
Design and Optimization of Solid Lattice Hybrid Structures Fabricated by Additive Manufacturing
,”
Addit. Manuf.
,
33
, p.
101116
. 10.1016/j.addma.2020.101116
98.
Yu
,
Z.
,
Shea
,
K.
, and
Stanković
,
T.
,
2019
, “
A Computational Method for the Design of an Additively Manufactured Personalized Artificial Spinal Disc With Physiological Stiffness Under Multiple Loading Conditions
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101406
. 10.1115/1.4043931
99.
Lumpe
,
T.
, and
Shea
,
K.
,
2019
, “
Computational Design of 4D Printed Shape Morphing Multi-State Lattice Structures
,”
Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
.
100.
Xu
,
H.
,
Li
,
Y.
,
Chen
,
Y.
, and
Barbič
,
J.
,
2015
, “
Interactive Material Design Using Model Reduction
,”
ACM Trans. Graphics
,
34
(
2
), pp.
1
14
. 10.1145/2699648
101.
Bickel
,
B.
,
Bächer
,
M.
,
Otaduy
,
M. A.
,
Lee
,
H. R.
,
Pfister
,
H.
,
Gross
,
M.
, and
Matusik
,
W.
,
2010
, “
Design and Fabrication of Materials With Desired Deformation Behavior
,”
ACM Trans. Graphics
,
29
(
4
), pp.
1
10
. 10.1145/1778765.1778800
102.
Bickel
,
B.
,
Bächer
,
M.
,
Otaduy
,
M. A.
,
Matusik
,
W.
,
Pfister
,
H.
, and
Gross
,
M.
,
2009
, “
Capture and Modeling of Non-Linear Heterogeneous Soft Tissue
,”
ACM Trans. Graphics
,
28
(
3
), pp.
1
9
. 10.1145/1531326.1531395
103.
Fang
,
G.
,
Matte
,
C.-D.
,
Kwok
,
T.-H.
, and
Wang
,
C. C.
,
2018
, “
Geometry-based Direct Simulation for Multi-Material Soft Robots
,”
Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
, IEEE, pp.
1
6
.
104.
Weeger
,
O.
,
Narayanan
,
B.
, and
Dunn
,
M. L.
,
2019
, “
Isogeometric Shape Optimization of Nonlinear, Curved 3D Beams and Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
26
51
. 10.1016/j.cma.2018.10.038
105.
Tavakkoli
,
S.
, and
Hassani
,
B.
,
2014
, “
Isogeometric Topology Optimization by Using Optimality Criteria and Implicit Function
,”
Int. J. Optim. Civil Eng
,
4
(
2
), pp.
151
163
.
106.
Weeger
,
O.
,
Boddeti
,
N.
,
Yeung
,
S.-K.
,
Kaijima
,
S.
, and
Dunn
,
M.
,
2019
, “
Digital Design and Nonlinear Simulation for Additive Manufacturing of Soft Lattice Structures
,”
Addit. Manuf.
,
25
, pp.
39
49
. 10.1016/j.addma.2018.11.003
107.
Gao
,
J.
,
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Li
,
P.
,
2020
, “
Topology Optimization of Micro-Structured Materials Featured With the Specific Mechanical Properties
,”
Int. J. Comput. Methods
,
17
(
03
), p.
1850144
. 10.1142/S021987621850144X
108.
Li
,
H.
,
Luo
,
Z.
,
Zhang
,
N.
,
Gao
,
L.
, and
Brown
,
T.
,
2016
, “
Integrated Design of Cellular Composites Using a Level-set Topology Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
309
, pp.
453
475
. 10.1016/j.cma.2016.06.012
109.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2020
, “
Multi-material Topology Optimization of Lattice Structures Using Geometry Projection
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112895
. 10.1016/j.cma.2020.112895
110.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3D Printing
,”
ACM Trans. Graphics
,
34
(
4
), pp.
1
13
. 10.1145/2766926
111.
Elishakoff
,
I.
,
Gentilini
,
C.
, and
Viola
,
E.
,
2005
, “
Three-dimensional Analysis of an All-Round Clamped Plate Made of Functionally Graded Materials
,”
Acta Mech.
,
180
(
1–4
), pp.
21
36
. 10.1007/s00707-005-0270-y
112.
Na
,
K. S.
, and
Kim
,
J. H.
,
2009
, “
Volume Fraction Optimization of Functionally Graded Composite Panels for Stress Reduction and Critical Temperature
,”
Finite Elem. Anal. Des.
,
45
(
11
), pp.
845
851
. 10.1016/j.finel.2009.06.023
113.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the 22nd Solid Freeform Fabrication (SFF) Symposium
,
Austin, TX
, pp.
348
362
.
114.
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R. J.
,
2014
, “
An Error Diffusion Based Method to Generate Functionally Graded Cellular Structures
,”
Comput. Struct.
,
138
, pp.
102
111
. 10.1016/j.compstruc.2014.03.004
115.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
Multifunctional Design of Heterogeneous Cellular Structures
,”
Struct. Multidiscip. Optim.
,
58
(
3
), pp.
1121
1138
. 10.1007/s00158-018-1956-9
116.
Alzahrani
,
M.
,
Choi
,
S.-K.
, and
Rosen
,
D. W.
,
2015
, “
Design of Truss-Like Cellular Structures Using Relative Density Mapping Method
,”
Mater. Des.
,
85
, pp.
349
360
. 10.1016/j.matdes.2015.06.180
117.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
,
Dong
,
G.
,
Tang
,
Y.
, and
Xie
,
Y. M.
,
2018
, “
Optimal Design and Modeling of Gyroid-Based Functionally Graded Cellular Structures for Additive Manufacturing
,”
Comput.-Aided Des.
,
104
, pp.
87
99
. 10.1016/j.cad.2018.06.003
118.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
. 10.1016/j.addma.2017.11.008
119.
Teufelhart
,
S.
, and
Reinhart
,
G.
,
2012
, “
Optimization of Strut Diameters in Lattice Structures
,”
Proceedings of the 23rd Solid Freeform Fabrication (SFF) Symposium
,
Austin, TX
.
120.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
. 10.1007/s10853-012-6905-1
121.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
. 10.1115/1.4027609
122.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
. 10.1115/1.4036941
123.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
. 10.1115/1.4046812
124.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graphics
,
34
(
4
), pp.
1
12
. 10.1145/2766937
125.
Li
,
H.
,
Luo
,
Z.
,
Xiao
,
M.
,
Gao
,
L.
, and
Gao
,
J.
,
2019
, “
A New Multiscale Topology Optimization Method for Multiphase Composite Structures of Frequency Response With Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
356
, pp.
116
144
. 10.1016/j.cma.2019.07.020
126.
Wang
,
L.
,
Cai
,
Y.
, and
Liu
,
D.
,
2018
, “
Multiscale Reliability-Based Topology Optimization Methodology for Truss-Like Microstructures With Unknown-but-Bounded Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
358
388
. 10.1016/j.cma.2018.05.003
127.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput.-Aided Des.
,
83
, pp.
15
32
. 10.1016/j.cad.2016.09.009
128.
Vicente
,
W.
,
Zuo
,
Z.
,
Pavanello
,
R.
,
Calixto
,
T.
,
Picelli
,
R.
, and
Xie
,
Y.
,
2016
, “
Concurrent Topology Optimization for Minimizing Frequency Responses of Two-Level Hierarchical Structures
,”
Comput. Methods Appl. Mech. Eng.
,
301
, pp.
116
136
. 10.1016/j.cma.2015.12.012
129.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures With Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
1
19
. 10.1007/s00158-017-1689-1
130.
Zhao
,
J.
,
Yoon
,
H.
, and
Youn
,
B. D.
,
2019
, “
Concurrent Topology Optimization With Uniform Microstructure for Minimizing Dynamic Response in the Time Domain
,”
Comput. Struct.
,
222
, pp.
98
117
. 10.1016/j.compstruc.2019.07.008
131.
Xia
,
L.
, and
Breitkopf
,
P.
,
2017
, “
Recent Advances on Topology Optimization of Multiscale Nonlinear Structures
,”
Arch. Comput. Methods Eng.
,
24
(
2
), pp.
227
249
. 10.1007/s11831-016-9170-7
132.
Li
,
L.
,
Du
,
Z.
, and
Kim
,
H. A.
,
2020
, “
Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method
,”
JOM
,
72
(
4
), pp.
1734
1744
. 10.1007/s11837-020-04046-2
133.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
. 10.1115/1.4041176
134.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2015
, “
A Pareto-Optimal Approach to Multimaterial Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101701
. 10.1115/1.4031088
135.
Thomsen
,
J.
,
1992
, “
Topology Optimization of Structures Composed of One or Two Materials
,”
Struct. Optim.
,
5
(
1–2
), pp.
108
115
. 10.1007/BF01744703
136.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6605
6627
. 10.1016/S0045-7825(01)00252-3
137.
de Kruijf
,
N.
,
Zhou
,
S.
,
Li
,
Q.
, and
Mai
,
Y.-W.
,
2007
, “
Topological Design of Structures and Composite Materials With Multiobjectives
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7092
7109
. 10.1016/j.ijsolstr.2007.03.028
138.
Hvejsel
,
C. F.
, and
Lund
,
E.
,
2011
, “
Material Interpolation Schemes for Unified Topology and Multi-Material Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
811
825
. 10.1007/s00158-011-0625-z
139.
Jeong
,
S. H.
,
Choi
,
D.-H.
, and
Yoon
,
G. H.
,
2014
, “
Separable Stress Interpolation Scheme for Stress-Based Topology Optimization With Multiple Homogenous Materials
,”
Finite Elem. Anal. Des.
,
82
, pp.
16
31
. 10.1016/j.finel.2013.12.003
140.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-material Topology Optimization of Compliant Mechanisms Created via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
. 10.1115/1.4028439
141.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
. 10.1007/s00158-016-1513-3
142.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
. 10.1016/0021-9991(88)90002-2
143.
Cui
,
M.
,
Chen
,
H.
, and
Zhou
,
J.
,
2016
, “
A Level-set Based Multi-material Topology Optimization Method Using a Reaction Diffusion Equation
,”
Comput.-Aided Des.
,
73
, pp.
41
52
. 10.1016/j.cad.2015.12.002
144.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
‘Color’ Level Sets: A Multi-phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
. 10.1016/j.cma.2003.10.008
145.
Zhang
,
X.
,
Ramos
,
A. S.
, and
Paulino
,
G. H.
,
2017
, “
Material Nonlinear Topology Optimization Using the Ground Structure Method With a Discrete Filtering Scheme
,”
Struct. Multidiscip. Optim.
,
55
(
6
), pp.
2045
2072
. 10.1007/s00158-016-1627-7
146.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
. 10.1016/j.cma.2015.05.005
147.
Zhang
,
X. S.
,
Paulino
,
G. H.
, and
Ramos
,
A. S.
,
2018
, “
Multi-material Topology Optimization With Multiple Volume Constraints: A General Approach Applied to Ground Structures With Material Nonlinearity
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
161
182
. 10.1007/s00158-017-1768-3
148.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
149.
Yang
,
L.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
,
Gong
,
H.
, and
Stucker
,
B.
,
2015
, “
Additive Manufacturing of Metal Cellular Structures: Design and Fabrication
,”
JOM
,
67
(
3
), pp.
608
615
. 10.1007/s11837-015-1322-y
You do not currently have access to this content.