Abstract

Collaborative robotics is an umbrella term that conveys the general idea of proximity between machines and humans for some useful tasks in a shared space, with a range of options for timing (continuously, synchronously, alternately, etc.). While this type of human robot interaction is fairly common in many fields of robotics, this survey is dedicated to the technology and situations that are typical of industrial applications. The current state-of-the-art in collaborative robotics for industrial applications is the result of a long legacy of research and development in actuation principles and mechanisms from 2000s onward, together with an abundant literature about improving control performances, intuitive interaction modes, and perception with sensors. Safety technology and standardization is discussed according to the principles of risk estimation and the typical strategies for risk reduction that are suitable for different classes of robot systems are used in collaborative applications. The organization of applications (planning, role assignment, optimization of resources) has a major impact on both the quality and the safety of collaborative robotics solutions, with most of the literature focused on investigating those performance metrics that combine human factors and production figures. The survey is intended to delineate an interpretation key for the design of collaborative robotics solution that explains the relationship among all relevant factors: actuation, control, safety, physical interaction, usability, and productivity.

References

1.
Wang
,
L.
,
Gao
,
R.
,
Váncza
,
J.
,
Krüger
,
J.
,
Wang
,
X.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2019
, “
Symbiotic Human–Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
2
), pp.
701
726
. 10.1016/j.cirp.2019.05.002
2.
Krüger
,
J.
,
Lien
,
T. K.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann.
,
58
(
2
), pp.
628
646
. 10.1016/j.cirp.2009.09.009
3.
An
,
C. H.
, and
Hollerbach
,
J. M.
,
1989
, “
The Role of Dynamic Models in Cartesian Force Control of Manipulators
,”
Int. J. Rob. Res.
,
8
(
4
), pp.
51
72
. 10.1177/027836498900800403
4.
Craig
,
J. J.
, and
Raibert
,
M. H.
,
1979
, “
A Systematic Method of Hybrid Position/Force Control of a Manipulator
,”
Proceedings of the Computer Software and the IEEE Computer Society’s Third International Applications Conference, COMPSAC 79
,
Chicago, IL
, IEEE, pp.
446
451
.
5.
Yoshikawa
,
T.
,
Sugie
,
T.
, and
Tanaka
,
M.
,
1988
, “
Dynamic Hybrid Position/Force Control of Robot Manipulators-Controller Design and Experiment
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
699
705
. 10.1109/56.9307
6.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part Iiimplementation
,”
J. Dyn. Syst. Meas. Contr.
,
107
(
1
), pp.
8
16
. 10.1115/1.3140713
7.
Hogan
,
N.
,
1989
, “
Controlling Impedance at the Man/Machine Interface
,”
Proceedings, 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
, IEEE, pp.
1626
1631
.
8.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
1980 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes
,
Albuquerque, NM
, IEEE, pp.
95
100
.
9.
Caccavale
,
F.
,
Natale
,
C.
,
Siciliano
,
B.
, and
Villani
,
L.
,
1999
, “
Six-DOF Impedance Control Based on Angle/Axis Representations
,”
IEEE Trans. Rob. Autom.
,
15
(
2
), pp.
289
300
. 10.1109/70.760350
10.
Khatib
,
O.
, and
Burdick
,
J.
,
1986
, “
Motion and Force Control of Robot Manipulators
,”
Proceedings of the 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
, Vol.
3
, IEEE, pp.
1381
1386
.
11.
Khatib
,
O.
,
1986
, “The Potential Field Approach and Operational Space Formulation in Robot Control,”
Adaptive and Learning Systems
,
K. S.
Narendra
, ed.,
Springer
,
New York
, pp.
367
377
.
12.
Alami
,
R.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Bischoff
,
R.
,
Chatila
,
R.
,
De Luca
,
A.
,
De Santis
,
A.
,
Giralt
,
G.
,
Guiochet
,
J.
,
Hirzinger
,
G.
,
Ingrand
,
F.
,
Lippiello
,
V.
,
Mattone
,
R.
,
Powell
,
D.
,
Sen
,
S.
,
Siciliano
,
B.
,
Tonietti
,
G.
, and
Villani
,
L.
,
2006
, “
Safe and Dependable Physical Human–Robot Interaction in Anthropic Domains: State of the Art and Challenges
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
, IEEE, pp.
1
16
.
13.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human–Robot Interaction
,”
Mech. Mach. Theory
,
43
(
3
), pp.
253
270
. 10.1016/j.mechmachtheory.2007.03.003
14.
International Federation of Robotics
,
2019
, “
World Robotics Industrial Robots
,”
Technical Report
.
15.
Bauer
,
W.
,
Bender
,
M.
,
Braun
,
M.
,
Rally
,
P.
, and
Scholtz
,
O.
,
2016
,
Lightweight Robots in Manual Assembly Best to Start Simply
,
Frauenhofer-Institut für Arbeitswirtschaft und Organisation IAO
,
Stuttgart
.
16.
Ajoudani
,
A.
,
Zanchettin
,
A. M.
,
Ivaldi
,
S.
,
Albu-Schäffer
,
A.
,
Kosuge
,
K.
, and
Khatib
,
O.
,
2018
, “
Progress and Prospects of the Human–Robot Collaboration
,”
Auton. Rob.
,
42
(
5
), pp.
957
975
. 10.1007/s10514-017-9677-2
17.
Guiochet
,
J.
,
Machin
,
M.
, and
Waeselynck
,
H.
,
2017
, “
Safety-Critical Advanced Robots: A Survey
,”
Rob. Auton. Syst.
,
94
, pp.
43
52
. 10.1016/j.robot.2017.04.004
18.
Robla-Gómez
,
S.
,
Becerra
,
V. M.
,
Llata
,
J. R.
,
Gonzalez-Sarabia
,
E.
,
Torre-Ferrero
,
C.
, and
Perez-Oria
,
J.
,
2017
, “
Working Together: A Review on Safe Human–Robot Collaboration in Industrial Environments
,”
IEEE Access
,
5
, pp.
26754
26773
. 10.1109/ACCESS.2017.2773127
19.
Villani
,
V.
,
Pini
,
F.
,
Leali
,
F.
, and
Secchi
,
C.
,
2018
, “
Survey on Human–Robot Collaboration in Industrial Settings: Safety, Intuitive Interfaces and Applications
,”
Mechatronics
,
55
, pp.
248
266
. 10.1016/j.mechatronics.2018.02.009
20.
Aaltonen
,
I.
,
Salmi
,
T.
, and
Marstio
,
I.
,
2018
, “
Refining Levels of Collaboration to Support the Design and Evaluation of Human–Robot Interaction in the Manufacturing Industry
,”
Procedia CIRP
,
72
, pp.
93
98
. 10.1016/j.procir.2018.03.214
21.
ISO 10218-2
,
2011
, “
Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 2: Robot Systems and Integration
.”
22.
ISO/TS 15066
,
2016
, “
Robots and Robotic Devices—Collaborative Robots
.”
23.
Compare
,
M.
,
Zio
,
E.
,
Moroni
,
E.
,
Portinari
,
G.
, and
Zanini
,
T.
,
2018
, “
Development of a Methodology for Systematic Analysis of Risk Reduction by Protective Measures in Tyre Production Machinery
,”
Saf. Sci.
,
110
, pp.
13
28
. 10.1016/j.ssci.2018.07.027
24.
Platbrood
,
F.
, and
Görnemann
,
O.
,
2018
, “
Safe Robotics—Safety in Collaborative Robot Systems
,”
Technical Report
,
SICK AG
.
25.
Saenz
,
J.
,
Elkmann
,
N.
,
Gibaru
,
O.
, and
Neto
,
P.
,
2018
, “
Survey of Methods for Design of Collaborative Robotics Applications—Why Safety is a Barrier to More Widespread Robotics Uptake
,”
Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering
,
Valenciennes, France
, ACM, pp.
95
101
.
26.
Schmidtler
,
J.
,
Knott
,
V.
,
Hölzel
,
C.
, and
Bengler
,
K.
,
2015
, “
Human Centered Assistance Applications for the Working Environment of the Future
,”
Occup. Ergon.
,
12
(
3
), pp.
83
95
. 10.3233/OER-150226
27.
Wang
,
X.
,
Seira
,
A.
, and
Wang
,
L.
,
2018
, “
Classification, Personalised Safety Framework and Strategy for Human–Robot Collaboration
.”
International Conference on Computers and Industrial Engineering (CIE)
.
28.
Vicentini
,
F.
,
2020
, “
Terminology in Safety of Collaborative Robotics
,”
Rob. Comput. Int. Manuf.
,
63
, pp.
101
921
.
29.
Peshkin
,
M. A.
,
Colgate
,
J. E.
,
Wannasuphoprasit
,
W.
,
Moore
,
C. A.
,
Gillespie
,
R. B.
, and
Akella
,
P.
,
2001
, “
Cobot Architecture
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
377
390
. 10.1109/70.954751
30.
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
1999
, “
Cobots
,”
US5952796A
.
31.
Moore
,
C. A.
,
Peshkin
,
M. A.
, and
Colgate
,
J. E.
,
1999
, “
Three Revolute Cobot Using CVTs in Parallel
,”
Dynamic Systems and Control Division-1999 (The ASME International Mechanical Engineering Congress and Exposition)
,
ASME
.
32.
ISO 8373
,
2012
, “
Robots and Robotic Devices—Vocabulary
.”
33.
ISO 12100
,
2010
, “
Safety of Machinery—General Principles for Design—Risk Assessment and Risk Reduction
.”
34.
Caimmi
,
M.
,
Guanziroli
,
E.
,
Malosio
,
M.
,
Pedrocchi
,
N.
,
Vicentini
,
F.
,
Molinari Tosatti
,
L.
, and
Molteni
,
F.
,
2015
, “
Normative Data for an Instrumental Assessment of the Upper-Limb Functionality
,”
BioMed Res. Int.
,
2015
, pp.
1
14
. 10.1155/2015/484131
35.
Pan
,
Z.
,
Polden
,
J.
,
Larkin
,
N.
,
Van Duin
,
S.
, and
Norrish
,
J.
,
2010
, “
Recent Progress on Programming Methods for Industrial Robots
,”
ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics)
,
Munich, Germany
, pp.
1
8
.
36.
Halme
,
R.-J.
,
Lanz
,
M.
,
Kämäräinen
,
J.
,
Pieters
,
R.
,
Latokartano
,
J.
, and
Hietanen
,
A.
,
2018
, “
Review of Vision-Based Safety Systems for Human–Robot Collaboration
,”
Procedia CIRP
,
72
, pp.
111
116
. 10.1016/j.procir.2018.03.043
37.
Marvel
,
J. A.
,
2013
, “
Performance Metrics of Speed and Separation Monitoring in Shared Workspaces
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
405
414
. 10.1109/TASE.2013.2237904
38.
Marvel
,
J. A.
, and
Norcross
,
R.
,
2017
, “
Implementing Speed and Separation Monitoring in Collaborative Robot Workcells
,”
Rob. Comput. Integr. Manuf.
,
44
, pp.
144
155
. 10.1016/j.rcim.2016.08.001
39.
Schmidt
,
B.
, and
Wang
,
L.
,
2014
, “
Depth Camera Based Collision Avoidance Via Active Robot Control
,”
J. Manuf. Syst.
,
33
(
4
), pp.
711
718
. 10.1016/j.jmsy.2014.04.004
40.
Vicentini
,
F.
,
Giussani
,
M.
, and
Tosatti
,
L. M.
,
2014
, “
Trajectory-Dependent Safe Distances in Human–Robot Interaction
,”
Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)
,
Barcelona, Spain
, IEEE, pp.
1
4
.
41.
Zanchettin
,
A. M.
,
Ceriani
,
N. M.
,
Rocco
,
P.
,
Ding
,
H.
, and
Matthias
,
B.
,
2015
, “
Safety in Human–Robot Collaborative Manufacturing Environments: Metrics and Control
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
882
893
. 10.1109/TASE.2015.2412256
42.
Byner
,
C.
,
Matthias
,
B.
, and
Ding
,
H.
,
2019
, “
Dynamic Speed and Separation Monitoring for Collaborative Robot Applications—Concepts and Performance
,”
Rob. Comput. Integr. Manuf.
,
58
, pp.
239
252
. 10.1016/j.rcim.2018.11.002
43.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1507
1527
. 10.1177/0278364909343970
44.
Melia
,
M.
,
Schmidt
,
M.
,
Geissler
,
B.
,
König
,
J.
,
Krahn
,
U.
,
Ottersbach
,
H. J.
,
Letzel
,
S.
, and
Muttray
,
A.
,
2015
, “
Measuring Mechanical Pain: The Refinement and Standardization of Pressure Pain Threshold Measurements
,”
Behav. Res. Methods
,
47
(
1
), pp.
216
227
. 10.3758/s13428-014-0453-3
45.
Mewes
,
D.
, and
Mauser
,
F.
,
2003
, “
Safeguarding Crushing Points by Limitation of Forces
,”
Int. J. Occup. Saf. Ergon.
,
9
(
2
), pp.
177
191
. 10.1080/10803548.2003.11076562
46.
Yamada
,
Y.
,
Hirasawa
,
Y.
,
Huang
,
S.
,
Umetani
,
Y.
, and
Suita
,
K.
,
1997
, “
Human–Robot Contact in the Safeguarding Space
,”
IEEE/ASME Trans. Mechatron.
,
2
(
4
), pp.
230
236
. 10.1109/3516.653047
47.
Melia
,
M.
,
Geissler
,
B.
,
König
,
J.
,
Ottersbach
,
H. J.
,
Umbreit
,
M.
,
Letzel
,
S.
, and
Muttray
,
A.
,
2019
, “
Pressure Pain Thresholds: Subject Factors and the Meaning of Peak Pressures
,”
Eur. J. Pain
,
23
(
1
), pp.
167
182
. 10.1002/ejp.1298
48.
Park
,
M. Y.
,
Han
,
D.
,
Lim
,
J. H.
,
Shin
,
M. K.
,
Han
,
Y. R.
,
Kim
,
D. H.
,
Rhim
,
S.
, and
Kim
,
K. S.
,
2019
, “
Assessment of Pressure Pain Thresholds in Collisions With Collaborative Robots
,”
PLoS One
,
14
(
5
), p.
e0215890
. 10.1371/journal.pone.0215890
49.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2015
, “
A Comparison of the Effectiveness of Design Approaches for Human-Friendly Robots
,”
ASME J. Mech. Des.
,
137
(
8
), p.
082302
. 10.1115/1.4030649
50.
Vemula
,
B.
,
Matthias
,
B.
, and
Ahmad
,
A.
,
2018
, “
A Design Metric for Safety Assessment of Industrial Robot Design Suitable for Power- and Force-Limited Collaborative Operation
,”
Int. J. Intell. Rob. Appl.
,
2
(
2
), pp.
226
234
. 10.1007/s41315-018-0055-9
51.
Marvel
,
J. A.
,
2017
, “
Sensors for Safe, Collaborative Robots in Smart Manufacturing
,”
2017 IEEE Sensors
,
Glasgow, UK
, pp.
1
3
.
52.
Augustsson
,
S.
,
Christiernin
,
L. G.
, and
Bolmsjö
,
G.
,
2014
, “
Human and Robot Interaction Based on Safety Zones in a Shared Work Environment
,”
Proceedings of the 2014 ACM/IEEE International Conference on Human–Robot Interaction
,
Bielefeld, Germany
, pp.
118
119
.
53.
Ore
,
F.
,
Hansson
,
L.
, and
Wiktorsson
,
M.
,
2017
, “
Method for Design of Human-Industrial Robot Collaboration Workstations
,”
Procedia Manuf.
,
11
, pp.
4
12
. 10.1016/j.promfg.2017.07.112
54.
IEC 61508
,
2010
, “
Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems
.”
55.
ISO 13849-1
,
2006
, “
Safety of Machinery—Safety-Related Parts of Control Systems—Part 1: General Principles for Design
.”
56.
Bobka
,
P.
,
Germann
,
T.
,
Heyn
,
J. K.
,
Gerbers
,
R.
,
Dietrich
,
F.
, and
Dröder
,
K.
,
2016
, “
Simulation Platform to Investigate Safe Operation of Human–Robot Collaboration Systems
,”
Procedia CIRP
,
44
, pp.
187
192
. 10.1016/j.procir.2016.01.199
57.
Adam
,
M. S.
,
Larsen
,
M.
,
Jensen
,
K.
, and
Schultz
,
U. P.
,
2016
, “
Rule-Based Dynamic Safety Monitoring for Mobile Robots
,”
J. Softw. Eng. Rob.
,
7
(
1
), pp.
120
141
.
58.
Guiochet
,
J.
,
2016
, “
Hazard Analysis of Human–Robot Interactions With HAZOP–UML
,”
Saf. Sci.
,
84
, pp.
225
237
. 10.1016/j.ssci.2015.12.017
59.
Guiochet
,
J.
,
Hoang
,
Q. A. D.
,
Kaaniche
,
M.
, and
Powell
,
D.
,
2013
, “
Model-Based Safety Analysis of Human–Robot Interactions: The MIRAS Walking Assistance Robot
,”
2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
, pp.
1
7
.
60.
Yakymets
,
N.
,
Sango
,
M.
,
Dhouib
,
S.
, and
Gelin
,
R.
,
2018
, “
Model-Based Engineering, Safety Analysis and Risk Assessment for Personal Care Robots
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
6136
6141
.
61.
Askarpour
,
M.
,
Mandrioli
,
D.
,
Rossi
,
M.
, and
Vicentini
,
F.
,
2019
, “
Formal Model of Human Erroneous Behavior for Safety Analysis in Collaborative Robotics
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
465
476
. 10.1016/j.rcim.2019.01.001
62.
Vicentini
,
F.
,
Askarpour
,
M.
,
Rossi
,
M. G.
, and
Mandrioli
,
D.
,
2019
, “
Safety Assessment of Collaborative Robotics Through Automated Formal Verification
,”
IEEE Trans. Rob.
,
36
(
1
), pp.
1
20
. 10.1109/tro.2019.2937471
63.
Zinn
,
M.
,
Roth
,
B.
,
Khatib
,
O.
, and
Salisbury
,
J. K.
,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
379
398
. 10.1177/0278364904042193
64.
Billard
,
A.
,
2017
, “
On the Mechanical, Cognitive and Sociable Facets of Human Compliance and Their Robotic Counterparts
,”
Rob. Auton. Syst.
,
88
, pp.
157
164
. 10.1016/j.robot.2016.08.030
65.
Albu-Schäffer
,
A.
,
Eiberger
,
O.
,
Grebenstein
,
M.
,
Haddadin
,
S.
,
Ott
,
C.
,
Wimbock
,
T.
,
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
Soft Robotics
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
20
30
. 10.1109/MRA.2008.927979
66.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
67.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), p.
eaah3690
. 10.1126/scirobotics.aah3690
68.
Wang
,
L.
, and
Iida
,
F.
,
2015
, “
Deformation in Soft-Matter Robotics: A Categorization and Quantitative Characterization
,”
IEEE Rob. Autom. Mag.
,
22
(
3
), pp.
125
139
. 10.1109/MRA.2015.2448277
69.
Verl
,
A.
,
Albu-Schäffer
,
A.
,
Brock
,
O.
, and
Raatz
,
A.
,
2015
,
Soft Robotics
,
Springer
,
New York
.
70.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and “Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
. 10.1109/MRA.2004.1310939
71.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2006
,
Experimental Robotics IX
, Optimal Mechanical/Control Design for Safe and Fast Robotics,
Springer
,
New York
, pp.
311
320
.
72.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Höppner
,
H.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M. G.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Visser
,
L. C.
,
Bicchi
,
A.
, and
Albu-Schäffer
,
A.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2418
2430
. 10.1109/TMECH.2015.2501019
73.
Grioli
,
G.
,
Wolf
,
S.
,
Garabini
,
M.
,
Catalano
,
M.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
van Damme
,
M.
,
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
, and
Bicchi
,
A.
,
2015
, “
Variable Stiffness Actuators: The Users Point of View
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
727
743
. 10.1177/0278364914566515
74.
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
. 10.1016/j.robot.2013.06.009
75.
Haddadin
,
S.
,
Mansfeld
,
N.
, and
Schäffer
,
A.
,
2012
, “
Rigid Vs Elastic Actuation: Requirements Performance
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
, pp.
5097
5104
.
76.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
, IEEE, pp.
399
406
.
77.
Knox
,
B. T.
, and
Schmiedeler
,
J. P.
,
2009
, “
A Unidirectional Series-Elastic Actuator Design Using a Spiral Torsion Spring
,”
ASME J. Mech. Des.
,
131
(
12
), p.
125001
. 10.1115/1.4000252
78.
Chew
,
C.-M.
,
Hong
,
G.-S.
, and
Zhou
,
W.
,
2004
, “
Series Damper Actuator: A Novel Force/Torque Control Actuator
,”
4th IEEE/RAS International Conference on Humanoid Robots, 2004
,
Santa Monica, CA
, pp.
533
546
.
79.
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2010
, “
On the Feasibility and Suitability of Mr Fluid Clutches in Human-Friendly Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1073
1082
. 10.1109/TMECH.2010.2074210
80.
Zinn
,
M.
,
Khatib
,
O.
,
Roth
,
B.
, and
Salisbury
,
J. K.
,
2002
, “
Towards a Human-Centered Intrinsically Safe Robotic Manipulator
,”
IARPIEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments
,
Toulouse, France
.
81.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot. Int. J.
,
29
(
3
), pp.
234
241
. 10.1108/01439910210425522
82.
Bicchi
,
A.
,
Rizzini
,
S. L.
, and
Tonietti
,
G.
,
2001
, “
Compliant Design for Intrinsic Safety: General Issues and Preliminary Design
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180)
,
Maui, HI
, IEEE, pp.
1864
1869
.
83.
Bicchi
,
A.
,
Tonietti
,
G.
,
Bavaro
,
M.
, and
Piccigallo
,
M.
,
2005
, “
Variable Stiffness Actuators for Fast and Safe Motion Control
,”
Robotics Research. The Eleventh International Symposium
, pp.
527
536
.
84.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, IEEE, pp.
526
531
.
85.
Flacco
,
F.
,
2012
, “
Modeling and Control of Robots With Compliant Actuation
.”
PhD dissertation
,
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Universitá di Roma
.
86.
Van Ham
,
R.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
. 10.1109/MRA.2009.933629
87.
Wolf
,
S.
,
Bahls
,
T.
,
Chalon
,
M.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Höppner
,
H.
,
Kühne
,
M.
,
Lakatos
,
D.
,
Mansfeld
,
N.
,
Özparpucu
,
M. C.
,
PetitJens
,
F.
,
Weitschat
,
R.
, and
Albu-Schäffer
,
A.
,
2015
, “Soft Robotics With Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction,”
Soft Robotics
,
Springer
,
New York
, pp.
231
254
.
88.
Stolt
,
A.
,
Linderoth
,
M.
,
Robertsson
,
A.
, and
Johansson
,
R.
,
2012
, “
Force Controlled Robotic Assembly Without a Force Sensor
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
, IEEE, pp.
1538
1543
.
89.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
23
39
. 10.1177/0278364907073776
90.
Calanca
,
A.
,
Muradore
,
R.
, and
Fiorini
,
P.
,
2015
, “
A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots
,”
IEEE/ASME Trans. Mechatron.
,
21
(
2
), pp.
613
624
. 10.1109/TMECH.2015.2465849
91.
Della Santina
,
C.
,
Bianchi
,
M.
,
Grioli
,
G.
,
Angelini
,
F.
,
Catalano
,
M.
,
Garabini
,
M.
, and
Bicchi
,
A.
,
2017
, “
Controlling Soft Robots: Balancing Feedback and Feedforward Elements
,”
IEEE Rob. Autom. Mag.
,
24
(
3
), pp.
75
83
. 10.1109/MRA.2016.2636360
92.
Ficuciello
,
F.
,
Villani
,
L.
, and
Siciliano
,
B.
,
2015
, “
Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
850
863
. 10.1109/TRO.2015.2430053
93.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061005
. 10.1115/1.4001666
94.
Calanca
,
A.
, and
Fiorini
,
P.
,
2018
, “
A Rationale for Acceleration Feedback in Force Control of Series Elastic Actuators
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
48
61
. 10.1109/TRO.2017.2765667
95.
Calanca
,
A.
, and
Fiorini
,
P.
,
2018
, “
Understanding Environment-Adaptive Force Control of Series Elastic Actuators
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
413
423
. 10.1109/TMECH.2018.2790350
96.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
105
118
. 10.1109/TMECH.2008.2004561
97.
Calanca
,
A.
,
Muradore
,
R.
, and
Fiorini
,
P.
,
2017
, “
Impedance Control of Series Elastic Actuators: Passivity and Acceleration-Based Control
,”
Mechatronics
,
47
, pp.
37
48
. 10.1016/j.mechatronics.2017.08.010
98.
Choi
,
W.
,
Won
,
J.
,
Lee
,
J.
, and
Park
,
J.
,
2017
, “
Low Stiffness Design and Hysteresis Compensation Torque Control of Sea for Active Exercise Rehabilitation Robots
,”
Auton. Rob.
,
41
(
5
), pp.
1221
1242
. 10.1007/s10514-016-9591-z
99.
Ghidini
,
S.
,
Beschi
,
M.
,
Pedrocchi
,
N.
, and
Visioli
,
A.
,
2018
, “
Robust Tuning Rules for Series Elastic Actuator PID Cascade Controllers
,”
IFAC-PapersOnLine
,
51
(
4
), pp.
220
225
. 10.1016/j.ifacol.2018.06.069
100.
Lin
,
Y.
,
Chen
,
Z.
, and
Yao
,
B.
,
2019
, “
Decoupled Torque Control of Series Elastic Actuator With Adaptive Robust Compensation of Time-Varying Load-Side Synamics
,”
IEEE Trans. Ind. Electron
. 10.1109/tie.2019.2934023
101.
Losey
,
D. P.
,
Erwin
,
A.
,
McDonald
,
C. G.
,
Sergi
,
F.
, and
O’Malley
,
M. K
,
2016
, “
A Time-Domain Approach to Control of Series Elastic Actuators: Adaptive Torque and Passivity-Based Impedance Control
,”
IEEE/ASME Trans. Mechatron.
,
21
(
4
), pp.
2085
2096
. 10.1109/TMECH.2016.2557727
102.
Oh
,
S.
, and
Kong
,
K.
,
2016
, “
High-Precision Robust Force Control of a Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
71
80
. 10.1109/TMECH.2016.2614503
103.
Sariyildiz
,
E.
,
Chen
,
G.
, and
Yu
,
H.
,
2017
, “
A Unified Robust Motion Controller Design for Series Elastic Actuators
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2229
2240
. 10.1109/TMECH.2017.2719682
104.
Sergi
,
F.
, and
O’Malley
,
M. K.
,
2015
, “
On the Stability and Accuracy of High Stiffness Rendering in Non-Backdrivable Actuators Through Series Elasticity
,”
Mechatronics
,
26
, pp.
64
75
. 10.1016/j.mechatronics.2015.01.007
105.
Park
,
S. H.
,
Lee
,
J.
,
Seo
,
K.-H.
, and
Jin
,
M.
,
2019
, “
Robust Link Position Tracking Control for Robot Manipulators With Series Elastic Actuators Using Time-Delay Estimation
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
, IEEE, pp.
3052
3058
.
106.
Farsoni
,
S.
,
Landi
,
C. T.
,
Ferraguti
,
F.
,
Secchi
,
C.
, and
Bonè
,
M.
,
2017
, “
Compensation of Load Dynamics for Admittance Controlled Interactive Industrial Robots Using a Quaternion-Based Kalman Filter
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
672
679
. 10.1109/LRA.2017.2651393
107.
Landi
,
C. T.
,
Ferraguti
,
F.
,
Secchi
,
C.
, and
Fantuzzi
,
C.
,
2016
, “
Tool Compensation in Walk-Through Programming for Admittance-Controlled Robots
,”
IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
, IEEE, pp.
5335
5340
.
108.
Ragaglia
,
M.
,
Zanchettin
,
A. M.
,
Bascetta
,
L.
, and
Rocco
,
P.
,
2016
, “
Accurate Sensorless Lead-Through Programming for Lightweight Robots in Structured Environments
,”
Rob. Comput. Integr. Manuf.
,
39
, pp.
9
21
. 10.1016/j.rcim.2015.11.002
109.
Beschi
,
M.
,
Villagrossi
,
E.
,
Pedrocchi
,
N.
, and
Tosatti
,
L. M.
,
2015
, “
A General Analytical Procedure for Robot Dynamic Model Reduction
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
, IEEE, pp.
4127
4132
.
110.
Lee
,
S.-D.
,
Kim
,
M.-C.
, and
Song
,
J.-B.
,
2015
, “
Sensorless Collision Detection for Safe Human–Robot Collaboration
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
, IEEE, pp.
2392
2397
.
111.
Lee
,
S.-D.
,
Ahn
,
K.-H.
, and
Song
,
J.-B.
,
2016
, “
Torque Control Based Sensorless Hand Guiding for Direct Robot Teaching
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
745
750
.
112.
Tian
,
Y.
,
Chen
,
Z.
,
Jia
,
T.
,
Wang
,
A.
, and
Li
,
L.
,
2016
, “
Sensorless Collision Detection and Contact Force Estimation for Collaborative Robots Based on Torque Observer
,”
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
, IEEE, pp.
946
951
.
113.
Yao
,
B.
,
Zhou
,
Z.
,
Wang
,
L.
,
Xu
,
W.
, and
Liu
,
Q.
,
2018
, “
Sensor-Less External Force Detection for Industrial Manipulators to Facilitate Physical Human–Robot Interaction
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4909
4923
. 10.1007/s12206-018-0939-5
114.
Zhang
,
S.
,
Wang
,
S.
,
Fengshui
,
J.
, and
Tan
,
M.
,
2019
, “
A Sensorless Hand Guiding Scheme Based on Model Identification and Control for Industrial Robot
,”
IEEE Trans. Ind. Inform.
,
15
(
9
), pp.
5204
5213
. 10.1109/TII.2019.2900119
115.
Briquet-Kerestedjian
,
N.
,
Makarov
,
M.
,
Grossard
,
M.
, and
Rodriguez-Ayerbe
,
P.
,
2017
, “
Generalized Momentum Based-Observer for Robot Impact Detection Insights and Guidelines Under Characterized Uncertainties
,”
2017 IEEE Conference on Control Technology and Applications (CCTA)
,
Kohala Coast, HI
, pp.
1282
1287
.
116.
Wahrburg
,
A.
,
Bös
,
J.
,
Listmann
,
K. D.
,
Dai
,
F.
,
Matthias
,
B.
, and
Ding
,
H.
,
2018
, “
Motor-Current-Based Estimation of Cartesian Contact Forces and Torques for Robotic Manipulators and Its Application to Force Control
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
879
886
. 10.1109/TASE.2017.2691136
117.
Yamada
,
Y.
,
Hirasawa
,
Y.
,
Huang
,
S.
,
Umetani
,
Y.
, and
Suita
,
K.
,
1997
, “
Human–Robot Contact in the Safeguarding Space
,”
IEEE/ASME Trans. Mechatron.
,
2
(
4
), pp.
230
236
. 10.1109/3516.653047
118.
De Luca
,
A.
, and
Flacco
,
F.
,
2012
, “
Integrated Control for PHRI: Collision Avoidance, Detection, Reaction and Collaboration
,”
2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
, IEEE, pp.
288
295
.
119.
De Luca
,
A.
, and
Mattone
,
R.
,
2005
, “
Sensorless Robot Collision Detection and Hybrid Force/Motion Control
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, IEEE, pp.
999
1004
.
120.
De Luca
,
A.
,
Albu-Schäffer
,
A.
,
Haddadin
,
S.
, and
Hirzinger
,
G.
,
2006
, “
Collision Detection and Safe Reaction With the DLR-III Lightweight Manipulator Arm
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
, IEEE, pp.
1623
1630
.
121.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
,
De Luca
,
A.
, and
Hirzinger
,
G.
,
2008
, “
Collision Detection and Reaction: A Contribution to Safe Physical Human–Robot Interaction
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
, IEEE, pp.
3356
3363
.
122.
Magrini
,
E.
,
Flacco
,
F.
, and
De Luca
,
A.
,
2015
, “
Control of Generalized Contact Motion and Force in Physical Human–Robot Interaction
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
, IEEE, pp.
2298
2304
.
123.
Krüger
,
J.
, and
Surdilovic
,
D.
,
2008
, “
Robust Control of Force-Coupled Human–Robot-Interaction in Assembly Processes
,”
CIRP Ann.
,
57
(
1
), pp.
41
44
. 10.1016/j.cirp.2008.03.005
124.
Nemec
,
B.
,
Likar
,
N.
,
Gams
,
A.
, and
Ude
,
A.
,
2018
, “
Human Robot Cooperation With Compliance Adaptation Along the Motion Trajectory
,”
Auton. Rob.
,
42
(
5
), pp.
1023
1035
. 10.1007/s10514-017-9676-3
125.
Vick
,
A.
,
Surdilovic
,
D.
,
Dräger
,
A. K.
, and
Krüger
,
J.
,
2014
, “
The Industrial Robot as Intelligent Tool Carrier for Human–Robot Interactive Artwork
,”
The 23rd IEEE International Symposium on Robot and Human Interactive Communication
,
Edinburgh, UK
, pp.
880
885
.
126.
Vick
,
A.
,
Surdilovic
,
D.
, and
Krüger
,
J.
,
2013
, “
Safe Physical Human–Robot Interaction With Industrial Dual-Arm Robots
,”
9th International Workshop on Robot Motion and Control
,
Kuslin, Poland
, pp.
264
269
.
127.
Vukobratovic
,
M.
,
2009
,
Dynamics and Robust Control of Robot-Environment Interaction
, Vol.
2
.
World Scientific
,
Singapore
.
128.
Haninger
,
K.
, and
Surdilovic
,
D.
,
2018
, “
Identification of Human Dynamics in User-Led Physical Human Robot Environment Interaction
,”
2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
,
Nanjing, China
, IEEE, pp.
509
514
.
129.
Kim
,
W.
,
Lee
,
J.
,
Peternel
,
L.
,
Tsagarakis
,
N.
, and
Ajoudani
,
A.
,
2017
, “
Anticipatory Robot Assistance for the Prevention of Human Static Joint Overloading in Human–Robot Collaboration
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
68
75
. 10.1109/LRA.2017.2729666
130.
Khoramshahi
,
M.
, and
Billard
,
A.
,
2019
, “
A Dynamical System Approach to Task-Adaptation in Physical Human–Robot Interaction
,”
Auton. Rob.
,
43
(
4
), pp.
927
946
. 10.1007/s10514-018-9764-z
131.
Haddadin
,
S.
,
2015
, “
Physical Safety in Robotics
,”
Formal Modeling and Verification of Cyber-Physical Systems: 1st International Summer School on Methods and Tools for the Design of Digital Systems
,
Drechsler
,
R.
,
Kühne
,
U.
, eds.,
Bremen, Sept. 2015
,
Springer Fachmedien Wiesbaden
,
Wiesbaden
, pp.
249
271
.
132.
Lim
,
H.-o.
, and
Tanie
,
K.
,
1999
, “
Collision-Tolerant Control of Human-Friendly Robot With Viscoelastic Trunk
,”
IEEE/ASME Trans. Mechatron.
,
4
(
4
), pp.
417
427
. 10.1109/3516.809520
133.
Suita
,
K.
,
Yamada
,
Y.
,
Tsuchida
,
N.
,
Imai
,
K.
,
Ikeda
,
H.
, and
Sugimoto
,
N.
,
1995
, “
A Failure-to-Safety “kyozon” System With Simple Contact Detection and Stop Capabilities for Safe Human-Autonomous Robot Coexistence
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
, Vol.
3
, IEEE, pp.
3089
3096
.
134.
Yamada
,
Y.
,
Yamamoto
,
T.
,
Morizono
,
T.
, and
Umetani
,
Y.
,
1999
, “
FTA-Based Issues on Securing Human Safety in a Human/Robot Coexistence System
,”
IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028)
,
Tokyo, Japan
, Vol.
2
, IEEE, pp.
1058
1063
.
135.
Yamada
,
Y.
,
Morizono
,
T.
,
Umetani
,
Y.
, and
Takahashi
,
H.
,
2005
, “
Highly Soft Viscoelastic Robot Skin With a Contact Object-Location-Sensing Capability
,”
IEEE Trans. Ind. Electron.
,
52
(
4
), pp.
960
968
. 10.1109/TIE.2005.851654
136.
Cirillo
,
A.
,
Ficuciello
,
F.
,
Natale
,
C.
,
Pirozzi
,
S.
, and
Villani
,
L.
,
2015
, “
A Conformable Force/Tactile Skin for Physical Human–Robot Interaction
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
41
48
. 10.1109/LRA.2015.2505061
137.
Mittendorfer
,
P.
,
Yoshida
,
E.
, and
Cheng
,
G.
,
2015
, “
Realizing Whole-Body Tactile Interactions With a Self-Organizing, Multi-Modal Artificial Skin on a Humanoid Robot
,”
Adv. Rob.
,
29
(
1
), pp.
51
67
. 10.1080/01691864.2014.952493
138.
Corrales
,
J.
,
Candelas
,
F.
, and
Torres
,
F.
,
2011
, “
Safe Human–Robot Interaction Based on Dynamic Sphere-Swept Line Bounding Volumes
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
177
185
. 10.1016/j.rcim.2010.07.005
139.
Flacco
,
F.
,
Kroeger
,
T.
,
De Luca
,
A.
, and
Khatib
,
O.
,
2015
, “
A Depth Space Approach for Evaluating Distance to Objects
,”
J. Intell. Rob. Syst.
,
80
(
1
), pp.
7
22
. 10.1007/s10846-014-0146-2
140.
Safeea
,
M.
,
Neto
,
P.
, and
Bearee
,
R.
,
2019
, “
On-Line Collision Avoidance for Collaborative Robot Manipulators by Adjusting Off-Line Generated Paths: An Industrial Use Case
,”
Rob. Auton. Syst.
,
119
, pp.
278
288
. 10.1016/j.robot.2019.07.013
141.
Zanchettin
,
A. M.
,
Rocco
,
P.
,
Chiappa
,
S.
, and
Rossi
,
R.
,
2019
, “
Towards an Optimal Avoidance Strategy for Collaborative Robots
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
47
55
. 10.1016/j.rcim.2019.01.015
142.
Long
,
P.
,
Chevallereau
,
C.
,
Chablat
,
D.
, and
Girin
,
A.
,
2018
, “
An Industrial Security System for Human–Robot Coexistence
,”
Ind. Rob. Int. J.
,
45
(
2
), pp.
220
226
. 10.1108/IR-09-2017-0165
143.
Kumar
,
S.
,
Savur
,
C.
, and
Sahin
,
F.
,
2018
, “
Dynamic Awareness of an Industrial Robotic Arm Using Time-of-Flight Laser-Ranging Sensors
,”
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Miyazaki, Japan
, pp.
2850
2857
.
144.
Zlatanski
,
M.
,
Sommer
,
P.
,
Zurfluh
,
F.
, and
Madonna
,
G. L.
,
2018
, “
Radar Sensor for Fenceless Machine Guarding and Collaborative Robotics
,”
2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR)
,
Shenyang, China
, IEEE, pp.
19
25
.
145.
Kim
,
E.
,
Yamada
,
Y.
, and
Okamoto
,
S.
,
2017
, “
Improvement of Safety Integrity Level by Multiplexing Radio Wave Sensors
,”
2017 IEEE/SICE International Symposium on System Integration (SII)
,
Taipei, Taiwan
, IEEE, pp.
942
947
.
146.
Kianoush
,
S.
,
Savazzi
,
S.
,
Vicentini
,
F.
,
Rampa
,
V.
, and
Giussani
,
M.
,
2016
, “
Device-Free Rf Human Body Fall Detection and Localization in Industrial Workplaces
,”
IEEE Internet Things J.
,
4
(
2
), pp.
351
362
. 10.1109/JIOT.2016.2624800
147.
Savazzi
,
S.
,
Rampa
,
V.
,
Vicentini
,
F.
, and
Giussani
,
M.
,
2015
, “
Device-Free Human Sensing and Localization in Collaborative Human–Robot Workspaces: A Case Study
,”
IEEE Sens. J.
,
16
(
5
), pp.
1253
1264
. 10.1109/JSEN.2015.2500121
148.
IEC TS 62998-1
,
2019
, “
Safety of Machinery—Safety-Related Sensors Used for the Protection of Persons
.”
149.
Jarrassé
,
N.
,
Sanguineti
,
V.
, and
Burdet
,
E.
,
2014
, “
Slaves No Longer: Review on Role Assignment for Human–Robot Joint Motor Action
,”
Adapt. Behav.
,
22
(
1
), pp.
70
82
. 10.1177/1059712313481044
150.
Cesta
,
A.
,
Orlandini
,
A.
,
Bernardi
,
G.
, and
Umbrico
,
A.
,
2016
, “
Towards a Planning-Based Framework for Symbiotic Human–Robot Collaboration
,”
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Berlin, Germany
, IEEE, pp.
1
8
.
151.
El Zaatari
,
S.
,
Marei
,
M.
,
Li
,
W.
, and
Usman
,
Z.
,
2019
, “
Cobot Programming for Collaborative Industrial Tasks: An Overview
,”
Rob. Auton. Syst.
,
116
, pp.
162
180
. 10.1016/j.robot.2019.03.003
152.
Argall
,
B. D.
,
Chernova
,
S.
,
Veloso
,
M.
, and
Browning
,
B.
,
2009
, “
A Survey of Robot Learning From Demonstration
,”
Rob. Auton. Syst.
,
57
(
5
), pp.
469
483
. 10.1016/j.robot.2008.10.024
153.
Tsarouchi
,
P.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2016
, “
Humanrobot Interaction Review and Challenges on Task Planning and Programming
,”
Int. J. Comput. Int. Manuf.
,
29
(
8
), pp.
916
931
. 10.1080/0951192X.2015.1130251
154.
Berg
,
J.
,
Gebauer
,
D.
, and
Reinhart
,
G.
,
2019
, “
Method for the Evaluation of Layout Options for a Human–Robot Collaboration
,”
Procedia CIRP
,
83
, pp.
139
145
. 10.1016/j.procir.2019.04.068
155.
Dianatfara
,
M.
,
Latokartanoa
,
J.
, and
Lanza
,
M.
,
2019
, “
Task Balancing Between Human and Robot in Mid-Heavy Assembly Tasks
,”
Procedia CIRP
,
81
, pp.
157
161
. 10.1016/j.procir.2019.03.028
156.
Samy
,
S.
, and
ElMaraghy
,
H.
,
2010
, “
A Model for Measuring Products Assembly Complexity
,”
Int. J. Comput. Integr. Manuf.
,
23
(
11
), pp.
1015
1027
. 10.1080/0951192X.2010.511652
157.
Ranz
,
F.
,
Hummel
,
V.
, and
Sihn
,
W.
,
2017
, “
Capability-Based Task Allocation in Human–Robot Collaboration
,”
Procedia Manuf.
,
9
, pp.
182
189
. 10.1016/j.promfg.2017.04.011
158.
Heydaryan
,
S.
,
Suaza Bedolla
,
J.
, and
Belingardi
,
G.
,
2018
, “
Safety Design and Development of a Human–Robot Collaboration Assembly Process in the Automotive Industry
,”
Appl. Sci.
,
8
(
3
), p.
344
. 10.3390/app8030344
159.
Bänziger
,
T.
,
Kunz
,
A.
, and
Wegener
,
K.
,
2018
, “
Optimizing Human–Robot Task Allocation Using a Simulation Tool Based on Standardized Work Descriptions
,”
J. Intell. Manuf.
, pp.
1
14
. 10.1007/s10845-018-1411-1
160.
Stenmark
,
M.
, and
Malec
,
J.
,
2014
, “
Describing Constraint-Based Assembly Tasks in Unstructured Natural Language
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
3056
3061
. 10.3182/20140824-6-ZA-1003.02062
161.
Hengstebeck
,
A.
,
Weisner
,
K.
,
Klöckner
,
M.
,
Deuse
,
J.
,
Kuhlenkötter
,
B.
, and
Roßmann
,
J.
,
2016
, “
Formal Modelling of Manual Work Processes for the Application of Industrial Service Robotics
,”
Procedia CIRP
,
41
, pp.
364
369
. 10.1016/j.procir.2015.12.013
162.
Tao
,
F.
, and
Qi
,
Q.
,
2017
, “
New It Driven Service-Oriented Smart Manufacturing: Framework and Characteristics
,”
IEEE Trans. Syst. Man Cyber. Syst.
,
49
(
1
), pp.
81
91
. 10.1109/TSMC.2017.2723764
163.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
, pp.
157
169
. 10.1016/j.jmsy.2018.01.006
164.
Backhaus
,
J.
, and
Reinhart
,
G.
,
2017
, “
Digital Description of Products, Processes and Resources for Task-Oriented Programming of Assembly Systems
,”
J. Intell. Manuf.
,
28
(
8
), pp.
1787
1800
. 10.1007/s10845-015-1063-3
165.
Bochmann
,
L.
,
Bänziger
,
T.
,
Kunz
,
A.
, and
Wegener
,
K.
,
2017
, “
Human–Robot Collaboration in Decentralized Manufacturing Systems: An Approach for Simulation-Based Evaluation of Future Intelligent Production
,”
Procedia CIRP
,
62
, pp.
624
629
. 10.1016/j.procir.2016.06.021
166.
Chen
,
F.
,
Sekiyama
,
K.
,
Cannella
,
F.
, and
Fukuda
,
T.
,
2013
, “
Optimal Subtask Allocation for Human and Robot Collaboration Within Hybrid Assembly System
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
4
), pp.
1065
1075
. 10.1109/TASE.2013.2274099
167.
Baskaran
,
S.
,
Niaki
,
F. A.
,
Tomaszewski
,
M.
,
Gill
,
J. S.
,
Chen
,
Y.
,
Jia
,
Y.
,
Mears
,
L.
, and
Krovi
,
V.
,
2019
, “
Digital Human and Robot Simulation in Automotive Assembly Using Siemens Process Simulate: A Feasibility Study
,”
Procedia Manuf.
,
34
, pp.
986
994
. 10.1016/j.promfg.2019.06.097
168.
Chen
,
F.
,
Sekiyama
,
K.
,
Sasaki
,
H.
,
Huang
,
J.
,
Sun
,
B.
, and
Fukuda
,
T.
,
2011
, “
Assembly Strategy Modeling and Selection for Human and Robot Coordinated Cell Assembly
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
, IEEE, pp.
4670
4675
.
169.
Takata
,
S.
, and
Hirano
,
T.
,
2011
, “
Human and Robot Allocation Method for Hybrid Assembly Systems
,”
CIRP Ann.
,
60
(
1
), pp.
9
12
. 10.1016/j.cirp.2011.03.128
170.
Guerin
,
F.
, and
Ferreira
,
P.
,
2019
, “
Robot Manipulation in Open Environments: New Perspectives
,”
IEEE Trans. Cogn. Dev. Syst
.
171.
Horton
,
T. E.
,
Chakraborty
,
A.
, and
Amant
,
R. S.
,
2012
, “
Affordances for Robots: A Brief Survey
,”
AVANT Pismo Awangardy Filozoficzno-Naukowej
,
2
, pp.
70
84
.
172.
Kroemer
,
O.
,
Leischnig
,
S.
,
Luettgen
,
S.
, and
Peters
,
J.
,
2018
, “
A Kernel-Based Approach to Learning Contact Distributions for Robot Manipulation Tasks
,”
Auton. Rob.
,
42
(
3
), pp.
581
600
. 10.1007/s10514-017-9651-z
173.
Lakani
,
S. R.
,
Rodríguez-Sánchez
,
A. J.
, and
Piater
,
J.
,
2019
, “
Towards Affordance Detection for Robot Manipulation Using Affordance for Parts and Parts for Affordance
,”
Auton. Rob.
,
43
(
5
), pp.
1155
1172
. 10.1007/s10514-018-9787-5
174.
Moldovan
,
B.
,
Moreno
,
P.
,
Van Otterlo
,
M.
,
Santos-Victor
,
J.
, and
De Raedt
,
L.
,
2012
, “
Learning Relational Affordance Models for Robots in Multi-Object Manipulation Tasks
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
, IEEE, pp.
4373
4378
.
175.
Chen
,
H.-G.
, and
Guerrero
,
H. H.
,
1992
, “
A Rule-Based Robot Scheduling System for Flexible Manufacturing Cells
,”
J. Intell. Manuf.
,
3
(
5
), pp.
285
296
. 10.1007/BF01577270
176.
Shen
,
Y.
,
Reinhart
,
G.
, and
Tseng
,
M.
,
2015
, “
A Design Approach for Incorporating Task Coordination for Human-Robot-Coexistence Within Assembly Systems
,”
2015 Annual IEEE Systems Conference (SysCon) Proceedings
,
Vancouver, BC, Canada
, IEEE, pp.
426
431
.
177.
Ding
,
H.
,
Schipper
,
M.
, and
Matthias
,
B.
,
2014
, “
Optimized Task Distribution for Industrial Assembly in Mixed Human–Robot Environments–Case Study on Io Module Assembly
,”
2014 IEEE International Conference on Automation Science and Engineering (CASE)
,
Taipei, Taiwan
, IEEE, pp.
19
24
.
178.
Mendes
,
N.
,
Safeea
,
M.
, and
Neto
,
P.
,
2018
, “
Flexible Programming and Orchestration of Collaborative Robotic Manufacturing Systems
,”
2018 IEEE 16th International Conference on Industrial Informatics (INDIN)
,
Porto, Portugal
, IEEE, pp.
913
918
.
179.
Shah
,
J.
,
Wiken
,
J.
,
Williams
,
B.
, and
Breazeal
,
C.
,
2011
, “
Improved Human–Robot Team Performance Using Chaski, a Human-Inspired Plan Execution System
,”
Proceedings of the 6th International Conference on Human–Robot Interaction
,
Lausanne, Switzerland
, ACM, pp.
29
36
.
180.
Gombolay
,
M. C.
,
Huang
,
C.
, and
Shah
,
J.
,
2015
, “
Coordination of Human–Robot Teaming With Human Task Preferences
,”
2015 AAAI Fall Symposium Series
.
181.
Nikolaidis
,
S.
,
Hsu
,
D.
, and
Srinivasa
,
S.
,
2017
, “
Human–Robot Mutual Adaptation in Collaborative Tasks: Models and Experiments
,”
Int. J. Rob. Res.
,
36
(
57
), pp.
618
634
. 10.1177/0278364917690593
182.
Casalino
,
A.
,
Zanchettin
,
A. M.
,
Piroddi
,
L.
, and
Rocco
,
P.
,
2019
, “
Optimal Scheduling of Human–Robot Collaborative Assembly Operations With Time Petri Nets
,”
IEEE Trans. Autom. Sci. Eng
.
183.
Wang
,
X. V.
,
Kemény
,
Z.
,
Váncza
,
J.
, and
Wang
,
L.
,
2017
, “
Human–Robot Collaborative Assembly in Cyber-Physical Production: Classification Framework and Implementation
,”
CIRP Ann.
,
66
(
1
), pp.
5
8
. 10.1016/j.cirp.2017.04.101
184.
Akkaladevi
,
S. C.
, and
Heindl
,
C.
,
2015
, “
Action Recognition for Human Robot Interaction in Industrial Applications
,”
2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS)
,
Bhubaneswar, India
, IEEE, pp.
94
99
.
185.
Nikolakis
,
N.
,
Sipsas
,
K.
,
Tsarouchi
,
P.
, and
Makris
,
S.
,
2018
, “
On a Shared Human–Robot Task Scheduling and Online Re-Scheduling
,”
Procedia CIRP
,
78
, pp.
237
242
. 10.1016/j.procir.2018.09.055
186.
Pichler
,
A.
,
Akkaladevi
,
S. C.
,
Ikeda
,
M.
,
Hofmann
,
M.
,
Plasch
,
M.
,
Wögerer
,
C.
, and
Fritz
,
G.
,
2017
, “
Towards Shared Autonomy for Robotic Tasks in Manufacturing
,”
Procedia Manuf.
,
11
, pp.
72
82
. 10.1016/j.promfg.2017.07.139
187.
Tsarouchi
,
P.
,
Matthaiakis
,
A.-S.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2017
, “
On a Human–Robot Collaboration in an Assembly Cell
,”
Int. J. Comput. Int. Manuf.
,
30
(
6
), pp.
580
589
. 10.1080/0951192X.2016.1187297
188.
Arai
,
T.
,
Kato
,
R.
, and
Fujita
,
M.
,
2010
, “
Assessment of Operator Stress Induced by Robot Collaboration in Assembly
,”
CIRP Ann.
,
59
(
1
), pp.
5
8
. 10.1016/j.cirp.2010.03.043
189.
Charalambous
,
G.
,
Fletcher
,
S.
, and
Webb
,
P.
,
2015
, “
Identifying the Key Organisational Human Factors for Introducing Human–Robot Collaboration in Industry: An Exploratory Study
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
2143
2155
. 10.1007/s00170-015-7335-4
190.
Matthias
,
B.
, and
Reisinger
,
T.
,
2016
, “
Example Application of ISO/TS 15066 to a Collaborative Assembly Scenario
,”
Proceedings of ISR 2016: 47st International Symposium on Robotics
,
Munich, Germany
, pp.
1
5
.
191.
Charalambous
,
G.
,
Fletcher
,
S.
, and
Webb
,
P.
,
2016
, “
The Development of a Scale to Evaluate Trust in Industrial Human–Robot Collaboration
,”
Int. J. Social Rob.
,
8
(
2
), pp.
193
209
. 10.1007/s12369-015-0333-8
192.
Charalambous
,
G.
,
Fletcher
,
S. R.
, and
Webb
,
P.
,
2017
, “
The Development of a Human Factors Readiness Level Tool for Implementing Industrial Human–Robot Collaboration
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2465
2475
. 10.1007/s00170-016-9876-6
193.
Fletcher
,
S. R.
,
Johnson
,
T. L.
, and
Larreina
,
J.
,
2019
, “Putting People and Robots Together in Manufacturing: Are We Ready?,”
Robotics and Well-Being
,
Springer
,
New York
, pp.
135
147
.
You do not currently have access to this content.