Abstract

In this study, we propose a scalable batch sampling scheme for optimization of simulation models with spatially varying noise. The proposed scheme has two primary advantages: (i) reduced simulation cost by recommending batches of samples at carefully selected spatial locations and (ii) improved scalability by actively considering replicating at previously observed sampling locations. Replication improves the scalability of the proposed sampling scheme as the computational cost of adaptive sampling schemes grow cubicly with the number of unique sampling locations. Our main consideration for the allocation of computational resources is the minimization of the uncertainty in the optimal design. We analytically derive the relationship between the “exploration versus replication decision” and the posterior variance of the spatial random process used to approximate the simulation model’s mean response. Leveraging this reformulation in a novel objective-driven adaptive sampling scheme, we show that we can identify batches of samples that minimize the prediction uncertainty only in the regions of the design space expected to contain the global optimum. Finally, the proposed sampling scheme adopts a modified preposterior analysis that uses a zeroth-order interpolation of the spatially varying simulation noise to identify sampling batches. Through the optimization of three numerical test functions and one engineering problem, we demonstrate (i) the efficacy and of the proposed sampling scheme to deal with a wide array of stochastic functions, (ii) the superior performance of the proposed method on all test functions compared to existing methods, (iii) the empirical validity of using a zeroth-order approximation for the allocation of sampling batches, and (iv) its applicability to molecular dynamics simulations by optimizing the performance of an organic photovoltaic cell as a function of its processing settings.

References

1.
Hansoge
,
N. K.
,
Huang
,
T.
,
Sinko
,
R.
,
Xia
,
W.
,
Chen
,
W.
, and
Keten
,
S.
,
2018
, “
Materials by Design for Stiff and Tough Hairy Nanoparticle Assemblies
,”
ACS. Nano.
,
12
(
8
), pp.
7946
7958
. 10.1021/acsnano.8b02454
2.
Ludkovski
,
M.
, and
Niemi
,
J.
,
2011
, “
Optimal Disease Outbreak Decisions Using Stochastic Simulation
,”
IEEE, Winter Simulation Conference
,
Phoenix, AZ
,
Dec. 11–14
, pp.
3844
3853
.
3.
Cioffi-Revilla
,
C.
,
2014
,
Introduction to Computational Social Science
,
Springer
,
Berlin/New York
.
4.
Mehmani
,
A.
,
Chowdhury
,
S.
, and
Achille
,
M.
,
2015
, “
Predictive Quantification of Surrogate Model Fidelity Based on Modal Variations With Sample Density
,”
Structural Multidiscipl. Optim.
,
52
(
2
), pp.
353
373
. 10.1007/s00158-015-1234-z
5.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
6.
Chen
,
R. J. W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, QC, Canada
,
Sept. 29–Oct. 2
, Vol.
463
, pp.
1
10
.
7.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
1
), pp.
345
383
. 10.1023/A:1012771025575
8.
Forrester
,
A.I.J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Progress Aeros. Sci.
,
45
(
1–3
), pp.
50
79
. 10.1016/j.paerosci.2008.11.001
9.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
Nonhierarchical Multi-Mmodel Fusion Using Spatial Random Processes
,”
AIAA
,
106
(
7
), pp.
503
526
.
10.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Chen
,
W.
,
2017
, “
Multimodel Fusion Based Sequential Optimization
,”
AIAA
,
55
(
1
), pp.
241
254
. 10.2514/1.J054729
11.
Lam
,
R.
,
Willcox
,
K.
, and
Wolpert
,
D. H.
,
2016
, “
Bayesian Optimization With a Finite Budget: An Approximate Dynamic Programming Approach
,”
Conference on Neural Information Processing Systems
,
Barcelona, Catalonia, Spain
,
Dec. 5–11
, Vol.
29
, pp.
1
11
.
12.
Lam
,
R.
, and
Willcox
,
K.
,
2017
, “
Lookahead Bayesian Optimization With Inequality Constraints
,”
Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, Vol.
30
, pp.
1
11
.
13.
González
,
J.
,
Osborne
,
M.
, and
Lawrence
,
N. D.
,
2016
, “
Glasses: Relieving the Myopia of Bayesian Optimisation
,”
International Conference on Artificial Intelligence and Statistics
,
Cadiz, Spain
,
May 9–11
, Vol.
19
, pp.
790
799
.
14.
Assael
,
J.-A. M.
,
Wang
,
Z.
,
Shahriari
,
B.
, and
de Freitas
,
N.
,
2015
, “
Heteroscedastic Treed Bayesian Optimisation
,”
arXiv
, https://arxiv.org/abs/1410.7172
15.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
. 10.1115/1.4023922
16.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
. 10.1007/s10898-005-2454-3
17.
Léazaro-Gredilla
,
M.
, and
Titsias
,
M. K.
,
2011
, “
Variational Heteroscedastic Gaussian Process Regression
,”
International Conference on Machine Learning
,
Bellevue, WA
,
June 28–July 2
, Vol.
28
, pp.
1
8
.
18.
Binois
,
M.
,
Huang
,
J.
,
Gramacy
,
R. B.
, and
Ludkovski
,
M.
,
2018
, “
Replication or Exploration? Sequential Design for Stochastic Simulation Experiments
,”
Technometrics
,
61
(
1
), pp.
7
23
. 10.1080/00401706.2018.1469433
19.
Binois
,
M.
,
Gramacy
,
R. B.
, and
Ludkovski
,
M.
,
2018
, “
Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments
,”
J. Comput. Graphical Stat.
,
27
(
4
), pp.
808
821
. 10.1080/10618600.2018.1458625
20.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Inst. Operat. Res. Management Sci.
,
58
(
2
), pp.
371
382
. 10.1287/opre.1090.0754
21.
Ariizumi
,
R.
,
Tesch
,
M.
,
Kato
,
K.
,
Choset
,
H.
, and
Matsuno
,
F.
,
2016
, “
Multiobjective Optimization Based on Expensive Robotic Experiments Under Heteroscedastic Noise
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
468
483
. 10.1109/TRO.2016.2632739
22.
Quan
,
N.
,
Yin
,
J.
,
Ng
,
S. H.
, and
Lee
,
L. H.
,
2013
, “
Simulation Optimization Via Kriging: A Sequential Search Using Expected Improvement With Computing Budget Constraints
,”
IIE Trans.
,
45
(
7
), pp.
763
780
. 10.1080/0740817X.2012.706377
23.
Picheny
,
V.
,
Wagner
,
T.
, and
Ginsbourger
,
D.
,
2013
, “
A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization
,”
Structural Multidiscipl. Optim.
,
48
(
3
), pp.
607
626
. 10.1007/s00158-013-0919-4
24.
Hennig
,
P.
, and
Schuler
,
C. J.
,
2011
, “
The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters Using Gaussian Process Regression
,”
SIAM J. Optim.
,
21
(
3
), pp.
996
1026
. 10.1137/100801275
25.
van Beek
,
A.
,
Tao
,
S.
,
Plumlee
,
M.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Integration of Normative Decision-Making and Batch Sampling for Global Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031114
. https://doi.org/10.1115/1.4045601
26.
Loeppky
,
J. L.
,
Morore
,
L. M.
, and
Williams
,
B. J.
,
2010
, “
Batch Sequential Designs for Computer Experiments
,”
J. Stat. Planning Inference
,
140
(
6
), pp.
1452
1464
. 10.1016/j.jspi.2009.12.004
27.
Zhu
,
P.
,
Zhang
,
S.
, and
Chen
,
W.
,
2013
, “
Multi-Point Objective-Oriented Sequential Sampling Strategy for Constrained Robust Design
,”
Eng. Optim.
,
47
(
3
), pp.
287
307
. 10.1080/0305215X.2014.887705
28.
Torossian
,
L.
,
Picheny
,
V.
, and
Durrande
,
N.
,
2020
, “
Bayesian Quantile and Expectile Optimisation
,”
arXiv
, https://arxiv.org/abs/2001.04833
29.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
On the Use of Kriging Models to Approximate Determinisitic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
. 10.2514/1.8650
30.
Plumlee
,
M.
,
2014
, “
Fast Prediction of Deterministic Functions Using Sparse Grid Experimental Designs
,”
J. Am. Stat. Assoc.
,
109
(
508
), pp.
1581
1591
. 10.1080/01621459.2014.900250
31.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
J. Global Optim.
,
130
(
11
), pp.
1
9
.
32.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
1
), pp.
455
492
. 10.1023/A:1008306431147
33.
Binois
,
M.
,
Gramacy
,
R. B.
, and
Ludkovski
,
M.
,
2012
, “
Entropy Search for Information-Efficient Global Optimization
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
1809
1837
.
34.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proceedings of the Royal Society A
,
York, UK
,
July 17–20
, Vol.
463
, pp.
3251
3269
.
35.
Frazier
,
P.
,
Powell
,
W.
, and
Dayanik
,
S.
,
2009
, “
The Knowledge-Gradient Policy for Correlated Normal Beliefs
,”
INFORMS J. Comput.
,
21
(
4
), pp.
599
613
. 10.1287/ijoc.1080.0314
36.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Richet
,
Y.
, and
Caplin
,
G.
,
2013
, “
Quantile-Based Optimization of Noisy Computer Experiments With Tunable Precision
,”
Technometrics
,
55
(
1
), pp.
2
13
. 10.1080/00401706.2012.707580
37.
Pedrielli
,
G.
,
Wang
,
S.
, and
Ng
,
S. H.
,
2020
, “
An extended Two-Stage Sequential Optimization approach: Properties and performance
,”
Eur. J. Oper. Res.
,
45
, pp.
929
945
.
38.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Structural Safety
,
25
(
1
), pp.
47
68
. 10.1016/S0167-4730(02)00039-5
39.
Sobol
,
I.
,
1976
, “
Uniformly Distributed Sequences With an Additional Uniform Property
,”
USSR Comput. Math. Math. Phys.
,
16
(
5
), pp.
236
242
. 10.1016/0041-5553(76)90154-3
40.
van Beek
,
A.
,
Ghumman
,
U. F.
,
Munshi
,
J.
,
Tao
,
S.
,
Chien
,
T.
,
Balasubramanian
,
G.
,
Plumlee
,
M.
,
Apley
,
D.
, and
Chen
,
W.
,
2020
, “
Scalable Objective-Driven Batch Sampling in Simulation-Based Design for Models With Heteroscedastic Noise
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, online
,
Aug. 17–19
.
41.
Sherman
,
J.
, and
Morrison
,
W. J.
,
1950
, “
Adjustment of An Inverse Matrix Corresponding to a Change in One Element of a Given Matrix
,”
Ann. Math. Stat.
,
21
(
1
), pp.
124
127
. 10.1214/aoms/1177729893
42.
Jiang
,
Z.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
Surrogate Preposterior Analyses for Predicting and Enhancing Identifiability in Model Calibration
,”
Int. J. Uncertainty Quantification
,
5
(
4
), pp.
341
359
. 10.1615/Int.J.UncertaintyQuantification.2015012627
43.
Ginsbourger
,
D.
,
Riche
,
R. L.
, and
Carraro
,
L.
,
2008
,
“A Multi-Points Criterion for Deterministic Parallel Global Optimization Based on Gaussian Processes
.” https://hal.archivesouvertes.fr/hal-00260579
44.
Dixon
,
L. C. W.
, and
Szego
,
G. P.
,
1978
,
The Global Optimization Problem: An Introduction
,
North-Holland Pub. Co
,
Amsterdam, North-Holland
.
45.
Jalali
,
H.
,
van Nieuwenhuyse
,
I.
, and
Picheny
,
V.
,
2016
, “
Comparison of Kriging-Based Methods for Simulation Optimization With Heterogeneous Noise
,”
Eur. J. Oper. Res.
,
261
(
1
), pp.
279
301
.
46.
Wu
,
J.
,
Poloczek
,
M.
,
Wilson
,
A. G.
, and
Frazier
,
P. I.
,
2017
, “
Bayesian Optimization With Gradients
,”
Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, Vol.
31
, pp.
1
12
.
47.
Heeger
,
A. J.
,
2001
, “
Nobel Lecture: Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials
,”
Rev. Mod. Phys.
,
73
(
3
), p.
681
. 10.1103/RevModPhys.73.681
48.
Berger
,
P. R.
, and
Kim
,
M.
,
2018
, “
Polymer Solar Cells: P3ht: Pcbm and Beyond
,”
J. Renew. Sustainable Energy
,
10
(
1
), p.
013508
. 10.1063/1.5012992
49.
Giulia
,
G.
,
Juan
,
C.-G.
,
Giulio
,
C.
, and
Lanzani
,
G.
,
2011
, “
Transient Absorption Imaging of P3ht: Pcbm Photovoltaic Blend: Evidence for Interfacial Charge Transfer State
,”
J. Phys. Chem. Lett.
,
2
(
9
), pp.
1099
1105
. 10.1021/jz200389b
50.
Umar
,
F. G.
,
Akshay
,
I.
,
Rabindra
,
D.
,
Joydeep
,
M.
,
Aaron
,
W.
,
TeYu
,
C.
,
Ganesh
,
B.
, and
Wei
,
C.
,
2018
, “
A Spectral Density Function Approach for Active Layer Design of Organic Photovoltaic Cells
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111408
. https://doi.org/10.1115/1.4040912
51.
Marisol
,
R.-R.
,
Kyungkon
,
K.
, and
Carroll
,
D.L
,
2005
, “
High-Efficiency Photovoltaic Devices Based on Annealed Poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C 61 Blends
,”
Appl. Phys. Lett.
,
87
(
8
), p.
083506
. 10.1063/1.2006986
52.
Mihailetchi
,
V. D.
,
Xie
,
H. X.
,
de Boer
,
B.
,
Koster
,
L. J. A
, and
Blom
,
P. W. M.
,
2006
, “
Charge Transport and Photocurrent Generation in Poly (3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells
,”
Adv. Funct. Mater.
,
16
(
5
), pp.
699
708
. 10.1002/adfm.200500420
53.
Pederson
,
K.
,
Emblemsvåg
,
J.
,
Bailey
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2000
, “
Validating Design Methods & Research: The Validation Square
,”
Design Engineering Technical Conferences
,
Baltimore, MD
,
Sept. 10–14
, pp.
1
13
.
You do not currently have access to this content.