Abstract

Energy management plays a critical role in electric vehicle (EV) operations. To improve EV energy efficiency, this paper proposes an effective model predictive control (MPC)-based energy management strategy to simultaneously control the battery thermal management system (BTMS) and the cabin air conditioning (AC) system. We aim to improve the overall energy efficiency and battery cycle-life, while retaining soft constraints from both BTMS and AC systems. The MPC-based strategy is implemented by optimizing the battery operations and discharging schedules to avoid a peak load and by directly utilizing the regenerative power instead of recharging the battery. Compared with the benchmark system without any control coordination between BTMS and AC, the proposed MPC-based energy management has shown a 4.3% reduction in the recharging energy and a 6.5% improvement for the overall energy consumption. Overall, the MPC-based energy management is a promising solution to enhance the battery efficiency for EVs.

References

1.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
. 10.1016/j.enconman.2017.08.016
2.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power. Sources.
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
3.
Akinlabi
,
A. H.
, and
Solyali
,
D.
,
2020
, “
Configuration, Design, and Optimization of Air-cooled Battery Thermal Management System for Electric Vehicles: A Review
,”
Renewable. Sustainable. Energy Rev.
,
125
, p.
109815
. 10.1016/j.rser.2020.109815
4.
Wang
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2017
, “
Surrogate Based Multidisciplinary Design Optimization of Lithium-Ion Battery Thermal Management System in Electric Vehicles
,”
Struct. Multidiscipl. Optim.
,
56
(
6
), pp.
1555
1570
. 10.1007/s00158-017-1733-1
5.
Wang
,
X.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2018
, “
Multidisciplinary and Multifidelity Design Optimization of Electric Vehicle Battery Thermal Management System
,”
ASME J. Mech. Des.
,
140
(
9
), p.
094501
. 10.1115/1.4040484
6.
Dandurand
,
B.
,
Guarneri
,
P.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2013
, “
Equitable Multi-Objective Optimization Applied to the Design of a Hybrid Electric Vehicle Battery
,”
ASME J. Mech. Des.
,
135
(
4
), p.
041004
. 10.1115/1.4023553
7.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy
,
252
, p.
113426
. 10.1016/j.apenergy.2019.113426
8.
Wang
,
S.
,
Li
,
K.
,
Tian
,
Y.
,
Wang
,
J.
,
Wu
,
Y.
, and
Ji
,
S.
,
2019
, “
Improved Thermal Performance of a Large Laminated Lithium-Ion Power Battery by Reciprocating Air Flow
,”
Appl. Therm. Eng.
,
152
, pp.
445
454
. 10.1016/j.applthermaleng.2019.02.061
9.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power. Sources.
,
233
, pp.
47
61
. 10.1016/j.jpowsour.2013.01.095
10.
Yu
,
X.
,
Lu
,
Z.
,
Zhang
,
L.
,
Wei
,
L.
,
Cui
,
X.
, and
Jin
,
L.
,
2019
, “
Experimental Study on Transient Thermal Characteristics of Stagger-Arranged LithiumI-on Battery Pack With Air Cooling Strategy
,”
Int. J. Heat. Mass. Transfer.
,
143
, p.
118576
. 10.1016/j.ijheatmasstransfer.2019.118576
11.
Wang
,
T.
,
Tseng
,
K.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
12.
Gao
,
X.
,
Ma
,
Y.
, and
Chen
,
H.
,
2018
, “
Active Thermal Control of a Battery Pack Under Elevated Temperatures
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
262
267
. 10.1016/j.ifacol.2018.10.047
13.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat. Mass. Transfer.
,
83
, pp.
164
172
. 10.1016/j.ijheatmasstransfer.2014.11.079
14.
Wang
,
H.
,
He
,
F.
, and
Ma
,
L.
,
2016
, “
Experimental and Modeling Study of Controller-based Thermal Management of Battery Modules Under Dynamic Loads
,”
Int. J. Heat. Mass. Transfer.
,
103
, pp.
154
164
. 10.1016/j.ijheatmasstransfer.2016.07.041
15.
Masoudi
,
Y.
,
Mozaffari
,
A.
, and
Azad
,
N. L.
,
2016
, “
Battery Thermal Management of Electric Vehicles: An Optimal Control Approach
,”
ASME 2015 Dynamic Systems and Control Conference
,
Columbus, OH
, American Society of Mechanical Engineers Digital Collection.
16.
Tao
,
X.
, and
Wagner
,
J.
,
2016
, “
A Thermal Management System for the Battery Pack of a Hybrid Electric Vehicle: Modeling and Control
,”
Proc. Inst. Mech. Eng., Part D: J. Aut. Eng.
,
230
(
2
), pp.
190
201
. 10.1177/0954407015582323
17.
Masoudi
,
Y.
, and
Azad
,
N. L.
,
20172017
, “
Mpc-Based Battery Thermal Management Controller for Plug-in Hybrid Electric Vehicles
,”
American Control Conference (ACC)
,
Seattle, WA
, IEEE, pp.
4365
4370
18.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-McPherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Cabin and Battery Thermal Management of Connected and Automated Hevs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Tech.
,
28
(
5
), pp.
1711
1726
. 10.1109/TCST.2019.2923792
19.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Annual Rev. Control
,
45
, pp.
18
40
. 10.1016/j.arcontrol.2018.04.011
20.
Amini
,
M. R.
,
Sun
,
J.
, and
Kolmanovsky
,
I.
,
20182018
, “
Two-layer Model Predictive Battery Thermal and Energy Management Optimization for Connected and Automated Electric Vehicles
,”
IEEE Conference on Decision and Control (CDC)
,
Miami, FL
, IEEE, pp.
6976
6981
21.
Yang
,
Z.
,
Li
,
K.
, and
Foley
,
A.
,
2015
, “
Computational Scheduling Methods for Integrating Plug-in Electric Vehicles With Power Systems: A Review
,”
Renewable Sustainable Energy Rev
,
51
, pp.
396
416
. 10.1016/j.rser.2015.06.007
22.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Self-Adapting Intelligent Battery Thermal Management System Via Artificial Neural Network Based Model Predictive Control
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
.
23.
Zhang
,
X.
,
Kong
,
X.
,
Li
,
G.
, and
Li
,
J.
,
2014
, “
Thermodynamic Assessment of Active Cooling/heating Methods for Lithium-Ion Batteries of Electric Vehicles in Extreme Conditions
,”
Energy
,
64
, pp.
1092
1101
. 10.1016/j.energy.2013.10.088
24.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2013
, “
Sequential Co-Design of An Artifact and Its Controller Via Control Proxy Functions
,”
Mechatronics
,
23
(
4
), pp.
409
418
. 10.1016/j.mechatronics.2013.03.003
25.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-design of An Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
. 10.1115/1.4027335
26.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
. 10.1115/1.4040705
27.
Song
,
Z.
,
Hofmann
,
H.
,
Li
,
J.
,
Han
,
X.
,
Zhang
,
X.
, and
Ouyang
,
M.
,
2015
, “
A Comparison Study of Different Semi-active Hybrid Energy Storage System Topologies for Electric Vehicles
,”
J. Power. Sources.
,
274
, pp.
400
411
. 10.1016/j.jpowsour.2014.10.061
28.
Yang
,
Z.
,
Patil
,
D.
, and
Fahimi
,
B.
,
2018
, “
Online Estimation of Capacity Fade and Power Fade of Lithium-ion Batteries Based on Input–output Response Technique
,”
IEEE Trans. Trans. Electrification
,
4
(
1
), pp.
147
156
. 10.1109/TTE.2017.2775801
29.
Yang
,
Z.
,
Patil
,
D.
, and
Fahimi
,
B.
,
2019
, “
Electrothermal Modeling of Lithium-ion Batteries for Electric Vehicles
,”
IEEE Trans. Vehicular Tech.
,
68
(
1
), pp.
170
179
. 10.1109/TVT.2018.2880138
30.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Self-Adapting J-type Air-Based Battery Thermal Management System Via Model Predictive Control
,”
Appl. Energy
,
263
, p.
114640
. 10.1016/j.apenergy.2020.114640
31.
Liu
,
Y.
,
Ghassemi
,
P.
,
Chowdhury
,
S.
, and
Zhang
,
J.
,
2018
, “
Surrogate Based Multi-objective Optimization of J-type Battery Thermal Management System
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
.
32.
Evtimov
,
I.
,
Ivanov
,
R.
, and
Sapundjiev
,
M.
,
2017
, “
Energy Consumption of Auxiliary Systems of Electric Cars
,”
MATEC Web of Conferences, EDP Sciences
,
Sozopol, Bulgaria
., Vol.
133
, p.
06002
.
33.
Chandak
,
G. A.
, and
Bhole
,
A.
,
20172017
, “
A Review on Regenerative Braking in Electric Vehicle
,”
Innovations in Power and Advanced Computing Technologies (i-PACT)
,
Vellore, India
, IEEE, pp.
1
5
34.
Tesla
. “
Tesla model 3 specification
.” Available at https://www.tesla.com/model3.
35.
Laboratory
,
I. N.
Ev auxiliary systems impacts
.” Available at https://avt.inl.gov/sites/default/files/pdf/fsev/auxiliary.pdf
36.
Qi
,
Z.
,
2014
, “
Advances on Air Conditioning and Heat Pump System in Electric Vehicles–a Review
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
754
764
. 10.1016/j.rser.2014.07.038
37.
Khayyam
,
H.
,
Kouzani
,
A. Z.
,
Hu
,
E. J.
, and
Nahavandi
,
S.
,
2011
, “
Coordinated Energy Management of Vehicle Air Conditioning System
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
750
764
. 10.1016/j.applthermaleng.2010.10.022
38.
Pino
,
F. J.
,
Marcos
,
D.
,
Bordons
,
C.
, and
Rosa
,
F.
,
2015
, “
Car Air-conditioning Considerations on Hydrogen Consumption in Fuel Cell and Driving Limitations
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
11696
11703
. 10.1016/j.ijhydene.2015.04.079
39.
Marcos
,
D.
,
Pino
,
F. J.
,
Bordons
,
C.
, and
Guerra
,
J. J.
,
2014
, “
The Development and Validation of a Thermal Model for the Cabin of a Vehicle
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
646
656
. 10.1016/j.applthermaleng.2014.02.054
40.
He
,
H.
,
Jia
,
H.
,
Sun
,
C.
, and
Sun
,
F.
,
2018
, “
Stochastic Model Predictive Control of Air Conditioning System for Electric Vehicles: Sensitivity Study, Comparison, and Improvement
,”
IEEE Trans. Indus. Inform.
,
14
(
9
), pp.
4179
4189
. 10.1109/TII.2018.2813315
41.
Kiss
,
T.
,
Chaney
,
L.
, and
Meyer
,
J.
,
2013
, “
New automotive air conditioning system simulation tool developed in matlab/simulink
.” Technical Report,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
42.
Geller
,
B. M.
, and
Bradley
,
T. H.
,
2015
, “
Analyzing Drive Cycles for Hybrid Electric Vehicle Simulation and Optimization
,”
ASME J. Mech. Des.
,
137
(
4
), p.
041401
. 10.1115/1.4029583
You do not currently have access to this content.