Abstract

Real-world design optimization problems commonly entail constraints that must be satisfied for the design to be viable. Mathematically, the constraints divide the search space into feasible (where all constraints are satisfied) and infeasible (where at least one constraint is violated) regions. The presence of multiple constraints, constricted and/or disconnected feasible regions, non-linearity and multi-modality of the underlying functions could significantly slow down the convergence of evolutionary algorithms (EA). Since each design evaluation incurs some time/computational cost, it is of significant interest to improve the rate of convergence to obtain competitive solutions with relatively fewer design evaluations. In this study, we propose to accomplish this using two mechanisms: (a) more intensified search by identifying promising regions through “bump-hunting,” and (b) use of infeasibility-driven ranking to exploit the fact that optimal solutions are likely to be located on constraint boundaries. Numerical experiments are conducted on a range of mathematical benchmarks and empirically formulated engineering problems, as well as a simulation-based wind turbine design optimization problem. The proposed approach shows up to 53.48% improvement in median objective values and up to 69.23% reduction in cost of identifying a feasible solution compared with a baseline EA.

References

References
1.
De Gaetano
,
G.
,
Mundo
,
D.
,
Maletta
,
C.
,
Kroiss
,
M.
, and
Cremers
,
L.
,
2015
, “
Multi-objective Optimization of a Vehicle Body by Combining Gradient-Based Methods and Vehicle Concept Modelling
,”
Case Stud. Mech. Syst. Signal Process.
,
1
, pp.
1
7
. 10.1016/j.csmssp.2015.06.002
2.
Khan
,
A.
,
Do
,
J.
, and
Kim
,
D.
,
2016
, “
Cost Effective Optimal Mix Proportioning of High Strength Self Compacting Concrete Using Response Surface Methodology
,”
Comput. Concrete
,
17
(
5
), pp.
629
638
. 10.12989/cac.2016.17.5.629
3.
Chand
,
S.
,
Huynh
,
Q.
,
Singh
,
H.
,
Ray
,
T.
, and
Wagner
,
M.
,
2018
, “
On the Use of Genetic Programming to Evolve Priority Rules for Resource Constrained Project Scheduling Problems
,”
Inf. Sci.
,
432
, pp.
146
163
. 10.1016/j.ins.2017.12.013
4.
Streichert
,
F.
,
Ulmer
,
H.
, and
Zell
,
A.
,
2004
, “
Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem
,”
Operations Research Proceedings
2003
,
Heidelberg
,
Springer
, pp.
253
260
.
5.
Mezura-Montes
,
E.
, and
Coello
,
C. A. C.
,
2011
, “
Constraint-Handling in Nature-Inspired Numerical Optimization: Past, Present and Future
,”
Swarm Evol. Comput.
,
1
(
4
), pp.
173
194
. 10.1016/j.swevo.2011.10.001
6.
Coello
,
C. A. C.
,
2002
, “
Theoretical and Numerical Constraint-Handling Techniques Used With Evolutionary Algorithms: A Survey of the State of the Art
,”
Comput. Method Appl. Mech. Engin.
,
191
(
11–12
), pp.
1245
1287
. 10.1016/S0045-7825(01)00323-1
7.
Michalewicz
,
Z.
,
1995
, “
A Survey of Constraint Handling Techniques in Evolutionary Computation Methods.
,”
Evol. Program.
,
4
, pp.
135
155
.
8.
Homaifar
,
A.
,
Qi
,
C. X.
, and
Lai
,
S. H.
,
1994
, “
Constrained Optimization Via Genetic Algorithms
,”
Simulation
,
62
(
4
), pp.
242
253
. 10.1177/003754979406200405
9.
Bean
,
J. C.
,
1993
, “
A Dual Genetic Algorithm for Bounded Integer Programs
.”
10.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Method Appl. Mech. Engin.
,
186
(
2–4
), pp.
311
338
. 10.1016/S0045-7825(99)00389-8
11.
Ray
,
T.
,
Tai
,
K.
, and
Seow
,
K. C.
,
2001
, “
Multiobjective Design Optimization by An Evolutionary Algorithm
,”
Engin. Optim.
,
33
(
4
), pp.
399
424
. 10.1080/03052150108940926
12.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
13.
Ray
,
T.
,
Singh
,
H. K.
,
Isaacs
,
A.
, and
Smith
,
W.
,
2009
, “
Infeasibility Driven Evolutionary Algorithm for Constrained Optimization
,”
Constraint-Handling in Evolutionary Optimization
,
Heidelberg
,
Springer
, pp.
145
165
.
14.
Singh
,
H. K.
,
Alam
,
K.
, and
Ray
,
T.
,
2016
, “
Use of Infeasible Solutions During Constrained Evolutionary Search: A Short Survey
,”
Australasian Conference on Artificial Life and Computational Intelligence
,
Canberra
,
Springer
, pp.
193
205
.
15.
Takahama
,
T.
, and
Sakai
,
S.
,
2010
, “
Constrained Optimization by the ɛ Constrained Differential Evolution with An Archive and Gradient-based Mutation
,”
IEEE Congress on Evolutionary Computation
,
IEEE
,
Barcelona
, pp.
1
9
.
16.
Runarsson
,
T. P.
, and
Yao
,
X.
,
2000
, “
Stochastic Ranking for Constrained Evolutionary Optimization
,”
IEEE Trans. Evol. Comput.
,
4
(
3
), pp.
284
294
. 10.1109/4235.873238
17.
Mezura-Montes
,
E.
, and
Coello
,
C. A. C.
,
2008
, “
Constrained Optimization Via Multiobjective Evolutionary Algorithms
,”
Multiobjective Problem Solving From Nature
,
Heidelberg
,
Springer
, pp.
53
75
.
18.
Deb
,
K.
, and
Datta
,
R.
,
2013
, “
A Bi-objective Constrained Optimization Algorithm Using a Hybrid Evolutionary and Penalty Function Approach
,”
Engin. Optim.
,
45
(
5
), pp.
503
527
. 10.1080/0305215X.2012.685074
19.
Kimbrough
,
S. O.
,
Lu
,
M.
,
Wood
,
D. H.
, and
Wu
,
D.-J.
,
2003
, “
Exploring a Two-population Genetic Algorithm
,”
Genetic and Evolutionary Computation Conference
,
Chiacago
,
Springer
, pp.
1148
1159
.
20.
Singh
,
H. K.
,
Isaacs
,
A.
,
Ray
,
T.
, and
Smith
,
W.
,
2008
, “
Infeasibility Driven Evolutionary Algorithm (idea) for Engineering Design Optimization
,”
Australasian Joint Conference on Artificial Intelligence
,
Auckland
,
Springer
, pp.
104
115
.
21.
Sóbester
,
A.
,
Forrester
,
A. I.
,
Toal
,
D. J.
,
Tresidder
,
E.
, and
Tucker
,
S.
,
2014
, “
Engineering Design Applications of Surrogate-assisted Optimization Techniques
,”
Optim. Eng.
,
15
(
1
), pp.
243
265
. 10.1007/s11081-012-9199-x
22.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2016
, “
Multi-objective Optimization With Multiple Spatially Distributed Surrogates
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091401
. 10.1115/1.4034035
23.
Friedman
,
J. H.
, and
Fisher
,
N. I.
,
1999
, “
Bump Hunting in High-Dimensional Data
,”
Stat. Comput.
,
9
(
2
), pp.
123
143
. 10.1023/A:1008894516817
24.
Gionis
,
A.
,
Mathioudakis
,
M.
, and
Ukkonen
,
A.
,
2016
, “
Bump Hunting in the Dark: Local Discrepancy Maximization on Graphs
,”
IEEE Trans. Knowl. Data Engin.
,
29
(
3
), pp.
529
542
. 10.1109/TKDE.2016.2571693
25.
Becker
,
U.
, and
Fahrmeir
,
L.
,
2001
, “
Bump Hunting for Risk: A New Data Mining Tool and Its Applications
,”
Comput. Stat.
,
16
(
3
), pp.
373
386
. 10.1007/s001800100073
26.
Good
,
I.
, and
Gaskins
,
R.
,
1980
, “
Density Estimation and Bump-Hunting by the Penalized Likelihood Method Exemplified by Scattering and Meteorite Data
,”
J. Am. Stat. Assoc.
,
75
(
369
), pp.
42
56
. 10.1080/01621459.1980.10477419
27.
Polonik
,
W.
, and
Wang
,
Z.
,
2010
, “
Prim Analysis
,”
J. Mult. Anal.
,
101
(
3
), pp.
525
540
. 10.1016/j.jmva.2009.08.010
28.
Liang
,
J.
,
Runarsson
,
T. P.
,
Mezura-Montes
,
E.
,
Clerc
,
M.
,
Suganthan
,
P. N.
,
Coello
,
C. C.
, and
Deb
,
K.
,
2006
, “
Problem Definitions and Evaluation Criteria for the Cec 2006 Special Session on Constrained Real-parameter Optimization
,”
ASME J. Appl. Mech.
,
41
(
8
), pp.
8
31
.
29.
Hoffmeister
,
F.
, and
Bäck
,
T.
,
1990
, “
Genetic Algorithms and Evolution Strategies: Similarities and Differences
,”
International Conference on Parallel Problem Solving from Nature
,
Dortmund
,
Springer
, pp.
455
469
.
30.
The MathWorks, Inc.
,
Matlab Function Reference
. https://au.mathworks.com/help/pdf˙doc/matlab/index.html?s˙cid=doc˙ftr, Accessed March, 2020
(Latest release)
.
31.
Viana
,
F. A.
,
2016
, “
A Tutorial on Latin Hypercube Design of Experiments
,”
Qual. Reliab. Engin. Inter.
,
32
(
5
), pp.
1975
1985
. 10.1002/qre.v32.5
32.
Mezura-Montes
,
E.
,
Velázquez-Reyes
,
J.
, and
Coello
,
C. C.
,
2006
, “
Modified Differential Evolution for Constrained Optimization
,”
2006 IEEE International Conference on Evolutionary Computation
,
Vancouver
,
IEEE
, pp.
25
32
.
33.
Singh
,
H.
,
2011
, “
Development of Optimization Methods to Deal With Current Challenges in Engineering Design Optimization
,” PhD thesis,
University of New South Wales
,
Canberra, Australia
.
34.
Isaacs
,
A.
,
2009
, “
Development of Optimization Methods to Solve Computationally Expensive Problems
,” PhD thesis,
University of New South Wales, Australian Defence Force Academy (UNSW@ADFA)
,
Canberra, Australia
.
35.
Japanese Society of Evolutionary Computation
, “
The Third Evolutionary Computation Competition
,” http://www.jpnsec.org/files/competition2019/EC-Symposium-2019-Competition-English.html, Accessed October 28, 2019.
36.
Jekabsons
,
G.
,
2015
, “
Bump Hunting Using Patient Rule Induction Method for Matlab
.”
37.
Wilcoxon
,
F.
,
Katti
,
S.
, and
Wilcox
,
R. A.
,
1970
, “
Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed Rank Test
,”
Select Table Math. Stat.
,
1
, pp.
171
259
. 10.7717/peerj.4103/table-5
You do not currently have access to this content.