Abstract

This work introduces a computational method for designing bone scaffolds for maximum bone growth. A mechanobiological model of bone adaptation is used to compute the bone growth, taking into account the shape of the defect, the applied loading, and the existing density distribution of the bone in which the scaffold has been implanted. Numerical homogenization and a geometry projection technique are used to efficiently obtain surrogates of the effective elastic and diffusive properties of the scaffold as a function of the scaffold design and the bone density. These property surrogates are in turn used to perform bone adaptation simulations of the scaffold–bone system for a sampling of scaffold designs. Surrogates of the bone growth in the scaffold at the end of the simulated time and of the strain energy of the scaffold at implantation time are subsequently constructed from these simulations. Using these surrogates, we optimize the design of a scaffold implanted in a rabbit femur to maximize volume bone growth into the scaffold while ensuring a minimum stiffness at implantation. The results of the optimization demonstrate the effectiveness of the proposed method by showing that maximizing bone growth with a constraint on structural compliance renders scaffold designs with better bone growth than what would be obtained by only minimizing compliance.

References

1.
Finkemeier
,
C. G.
,
2002
, “
Bone-Grafting and Bone-Graft Substitutes
,”
J. Bone Joint Surg.
,
84
(
3
), pp.
454
464
.
2.
Dimitriou
,
R.
,
Jones
,
E.
,
McGonagle
,
D.
, and
Giannoudis
,
P. V.
,
2011
, “
Bone Regeneration: Current Concepts and Future Directions
,”
BMC Med.
,
9
(
66
), pp.
1
10
.
3.
Fernandez de Grado
,
G.
,
Keller
,
L.
,
Idoux-Gillet
,
Y.
,
Wagner
,
Q.
,
Musset
,
A. M.
,
Benkirane-Jessel
,
N.
,
Bornert
,
F.
, and
Offner
,
D.
,
2018
, “
Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management
,”
J. Tissue Eng.
,
9
.
4.
Khan
,
S. N.
,
Cammisa
,
F. P.
,
Sandhu
,
H. S.
,
Diwan
,
A. D.
,
Girardi
,
F. P.
, and
Lane
,
J. M.
,
2005
, “
The Biology of Bone Grafting.
,”
J. Am. Acad. Orthop. Surg.
,
13
(
1
), pp.
77
86
.
5.
Campana
,
V.
,
Milano
,
G.
,
Pagano
,
E.
,
Barba
,
M.
,
Cicione
,
C.
,
Salonna
,
G.
,
Lattanzi
,
W.
, and
Logroscino
,
G.
,
2014
, “
Bone Substitutes in Orthopaedic Surgery: From Basic Science to Clinical Practice
,”
J. Mater. Sci.: Mater. Med.
,
25
(
10
), pp.
2445
2461
.
6.
Brydone
,
A. S.
,
Meek
,
D.
, and
MacLaine
,
S.
,
2010
, “
Bone Grafting, Orthopaedic Biomaterials, and the Clinical Need for Bone Engineering
,”
Proc. Inst. Mech. Eng.
,
224
(
12
), pp.
1329
1343
.
7.
Wang
,
W.
, and
Yeung
,
K. W.
,
2017
, “
Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review
,”
Bioact. Mater.
,
2
(
4
), pp.
224
247
.
8.
Lauthe
,
O.
,
Soubeyrand
,
M.
,
Babinet
,
A.
,
Dumaine
,
V.
,
Anract
,
P.
, and
Biau
,
D. J.
,
2018
, “
The Indications and Donor-Site Morbidity of Tibial Cortical Strut Autografts in the Management of Defects in Long Bones
,”
Bone Joint J.
,
100-B
(
5
), pp.
667
674
.
9.
Metz
,
C.
,
Duda
,
G. N.
, and
Checa
,
S.
,
2019
, “
Towards Multi-Dynamic Mechano-Biological Optimization of 3D-Printed Scaffolds to Foster Bone Regeneration.
,”
Acta Biomater.
,
101
, pp.
117
127
.
10.
Wang
,
Y.
,
Arabnejad
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111406
.
11.
Carter
,
D. R.
, and
Beaupré
,
G. S.
,
2001
,
Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration
,
Cambridge University Press
,
New York
.
12.
Adachi
,
T.
,
Osako
,
Y.
,
Tanaka
,
M.
,
Hojo
,
M.
, and
Hollister
,
S. J.
,
2006
, “
Framework for Optimal Design of Porous Scaffold Microstructure by Computational Simulation of Bone Regeneration
,”
Biomaterials
,
27
(
21
), pp.
3964
3972
.
13.
Christen
,
P.
,
Ito
,
K.
,
Ellouz
,
R.
,
Boutroy
,
S.
,
Sornay-Rendu
,
E.
,
Chapurlat
,
R. D.
, and
Van Rietbergen
,
B.
,
2014
, “
Bone Remodelling in Humans is Load-Driven But Not Lazy
,”
Nat. Commun.
,
5
(
4855
), pp.
1
5
.
14.
Egan
,
P. F.
,
Bauer
,
I.
,
Shea
,
K.
, and
Ferguson
,
S. J.
,
2019
, “
Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031703
.
15.
Giannoudis
,
P. V.
,
Einhorn
,
T. A.
, and
Marsh
,
D.
,
2007
, “
Fracture Healing: The Diamond Concept
,”
Injury
,
38
(
Suppl. 4
), pp.
S3
S6
.
16.
Almeida
,
H. A.
, and
Bártolo
,
P. J.
,
2014
, “
Design of Tissue Engineering Scaffolds Based on Hyperbolic Surfaces: Structural Numerical Evaluation
,”
Med. Eng. Phys.
,
36
(
8
), pp.
1033
1040
.
17.
Wieding
,
J.
,
Wolf
,
A.
, and
Bader
,
R.
,
2014
, “
Numerical Optimization of Open-Porous Bone Scaffold Structures to Match the Elastic Properties of Human Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
37
(
21
), pp.
56
68
.
18.
Dias
,
M. R.
,
Guedes
,
J. M.
,
Flanagan
,
C. L.
,
Hollister
,
S. J.
, and
Fernandes
,
P. R.
,
2014
, “
Optimization of Scaffold Design for Bone Tissue Engineering: A Computational and Experimental Study
,”
Med. Eng. Phys.
,
36
(
4
), pp.
448
457
.
19.
Boccaccio
,
A.
,
Fiorentino
,
M.
,
Uva
,
A. E.
,
Laghetti
,
L. N.
, and
Monno
,
G.
,
2018
, “
Rhombicuboctahedron Unit Cell Based Scaffolds for Bone Regeneration: Geometry Optimization With a Mechanobiology Driven Algorithm
,”
Mater. Sci. Eng. C
,
83
(
March 2017
), pp.
51
66
.
20.
Mohammed
,
M. I.
, and
Gibson
,
I.
,
2018
, “
Design of Three-Dimensional, Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071701
.
21.
Egan
,
P. F.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2017
, “
Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061401
.
22.
Roberge
,
J.
, and
Norato
,
J.
,
2018
, “
Computational Design of Curvilinear Bone Scaffolds Fabricated Via Direct Ink Writing
,”
CAD Comput. Aid. Des.
,
95
(
12
), pp.
1
13
.
23.
Luo
,
D.
,
Rong
,
Q.
, and
Chen
,
Q.
,
2017
, “
Finite-Element Design and Optimization of a Three-Dimensional Tetrahedral Porous Titanium Scaffold for the Reconstruction of Mandibular Defects
,”
Med. Eng. Phys.
,
47
, pp.
176
183
.
24.
Sutradhar
,
A.
,
Paulino
,
G. H.
,
Miller
,
M. J.
, and
Nguyen
,
T. H.
,
2010
, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
30
), pp.
13222
13227
.
25.
Makowski
,
P.
, and
Kuś
,
W.
,
2016
, “
Optimization of Bone Scaffold Structures Using Experimental and Numerical Data
,”
Acta Mech.
,
227
(
1
), pp.
139
149
.
26.
Byrne
,
D. P.
,
Lacroix
,
D.
,
Planell
,
J. A.
,
Kelly
,
D. J.
, and
Prendergast
,
P. J.
,
2007
, “
Simulation of Tissue Differentiation in a Scaffold as a Function of Porosity, Young’s Modulus and Dissolution Rate: Application of Mechanobiological Models in Tissue Engineering
,”
Biomaterials
,
28
(
36
), pp.
5544
5554
.
27.
Sanz-Herrera
,
J. A.
,
Garcia-Aznar
,
J. M.
, and
Doblare
,
M.
,
2008
, “
A Mathematical Model for Bone Tissue Regeneration Inside a Specific Type of Scaffold
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
355
366
.
28.
Bashkuev
,
M.
,
Checa
,
S.
,
Postigo
,
S.
,
Duda
,
G.
, and
Schmidt
,
H.
,
2015
, “
Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion
,”
J. Biomech.
,
48
(
12
), pp.
3274
3282
.
29.
Pobloth
,
A. M.
,
Checa
,
S.
,
Razi
,
H.
,
Petersen
,
A.
,
Weaver
,
J. C.
,
Chmidt-Bleek
,
K.
,
Windolf
,
M.
,
Tatai
,
A. A.
,
Roth
,
C. P.
,
Schaser
,
K. D.
,
Duda
,
G. N.
, and
Schwabe
,
P.
,
2018
, “
Mechanobiologically Optimized 3D Titanium-Mesh Scaffolds Enhance Bone Regeneration in Critical Segmental Defects in Sheep
,”
Sci. Transl. Med.
,
10
(
423
), pp.
1
16
.
30.
Paris
,
M.
,
Götz
,
A.
,
Hettrich
,
I.
,
Bidan
,
C. M.
,
Dunlop
,
J. W.
,
Razi
,
H.
,
Zizak
,
I.
,
Hutmacher
,
D. W.
,
Fratzl
,
P.
,
Duda
,
G. N.
,
Wagermaier
,
W.
, and
Cipitria
,
A.
,
2017
, “
Scaffold Curvature-Mediated Novel Biomineralization Process Originates a Continuous Soft Tissue-to-Bone Interface
,”
Acta Biomater.
,
60
, pp.
64
80
.
31.
Norato
,
J. A.
, and
Wagoner Johnson
,
A. J.
,
2011
, “
A Computational and Cellular Solids Approach to the Stiffness-Based Design of Bone Scaffolds
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091003
.
32.
Lan Levengood
,
S. K.
,
Polak
,
S. J.
,
Wheeler
,
M. B.
,
Maki
,
A. J.
,
Clark
,
S. G.
,
Jamison
,
R. D.
, and
Wagoner Johnson
,
A. J.
,
2010
, “
Multiscale Osteointegration as a New Paradigm for the Design of Calcium Phosphate Scaffolds for Bone Regeneration
,”
Biomaterials
,
31
(
13
), pp.
3552
3563
.
33.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
34.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2019
, “
A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in MATLAB
,”
ASME J. Eng. Mater. Technol.
,
141
(
1
), p.
011005
.
35.
Terada
,
K.
,
Ito
,
T.
, and
Kikuchi
,
N.
,
1998
, “
Characterization of the Mechanical Behaviors of Solid-Fluid Mixture by the Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
153
(
3–4
), pp.
223
257
.
36.
Norato
,
J.
,
Haber
,
R.
,
Tortorelli
,
D.
, and
Bendsøe
,
M. P.
,
2004
, “
A Geometry Projection Method for Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2289
2312
.
37.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
(
4
), pp.
306
327
.
38.
Smith
,
H.
, and
Norato
,
J. A.
,
2020
, “
A MATLAB Code for Topology Optimization Using the Geometry Projection Method
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
1579
1594
.
39.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
.
40.
Hoelzle
,
D. J.
,
Alleyne
,
A. G.
, and
Wagoner Johnson
,
A. J.
,
2008
, “
Micro-Robotic Deposition Guidelines by a Design of Experiments Approach to Maximize Fabrication Reliability for the Bone Scaffold Application
,”
Acta Biomater.
,
4
(
4
), pp.
897
912
.
41.
Jacobs
,
C. R.
,
1994
, “
Numerical Simulation of Bone Adaptation to Mechanical Loading
,”
PhD thesis
,
Stanford University
,
Stanford, CA
.
42.
Doblaré
,
M.
, and
García
,
J.
,
2001
, “
Application of an Anisotropic Bone-Remodelling Model Based on a Damage-Repair Theory to the Analysis of the Proximal Femur Before and After Total Hip Replacement
,”
J. Biomech.
,
34
(
9
), pp.
1157
1170
.
43.
Fyhrie
,
D. P.
, and
Carter
,
D. R.
,
1986
, “
A Unifying Principle Relating Stress to Trabecular Bone Morphology
,”
J. Orthop. Res.
,
4
(
3
), pp.
304
317
.
44.
Martin
,
R. B.
,
1984
, “
Porosity and Specific Surface of Bone
,”
J. Crit. Rev. Biomed. Eng.
,
10
(
3
), pp.
179
222
.
45.
Greenwald
,
A. S.
,
Boden
,
S. D.
,
Goldberg
,
V. M.
,
Khan
,
Y.
,
Laurencin
,
C. T.
, and
Rosier
,
R. N.
,
2001
, “
Bone-Graft Substitutes: Facts, Fictions, and Applications
,”
J. Bone Joint Surg.
46.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
,
1990
, “
An Approach for Time-Dependent Bone Modeling and Remodeling-Application: A Preliminary Remodeling Simulation
,”
J. Orthop. Res.
,
8
(
5
), pp.
663
670
.
47.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
,
1990
, “
An Approach for Time-Dependent Bone Modeling and Remodeling- Theoretical Development
,”
J. Orthop. Res.
,
8
(
5
), pp.
651
661
.
48.
Liu
,
Y.
,
Zheng
,
G.
,
Letov
,
N.
, and
Zhao
,
Y. F.
,
2021
, “
A Survey of Modeling and Optimization Methods for Multi-Scale Heterogeneous Lattice Structures
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040803
.
49.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1173
1190
.
50.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1992
, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
,
10
(
2
), pp.
73
95
.
51.
Zhu
,
T.
,
Cui
,
Y.
,
Zhang
,
M.
,
Zhao
,
D.
,
Liu
,
G.
, and
Ding
,
J.
,
2020
, “
Engineered Three-Dimensional Scaffolds for Enhanced Bone Regeneration in Osteonecrosis
,”
Bioact. Mater.
,
5
(
3
), pp.
584
601
.
52.
Weiser
,
A.
, and
Zarantonello
,
S. E.
,
1988
, “
A Note on Piecewise Linear and Multilinear Table Interpolation in Many Dimensions
,”
Math. Comput.
,
50
, pp.
181
189
.
53.
Viana
,
F. A.
,
Gogu
,
C.
, and
Haftka
,
R. T.
,
2010
, “
Making the Most Out of Surrogate Models: Tricks of the Trade
,”
Proc. ASME Des. Eng. Tech. Conf.
,
1
(PARTS A AND B), pp.
587
598
.
54.
Afzal
,
A.
,
Kim
,
K. Y.
, and
Seo
,
J. W.
,
2017
, “
Effects of Latin Hypercube Sampling on Surrogate Modeling and Optimization
,”
Int. J. Fluid Mach. Syst.
,
10
(
3
), pp.
240
253
.
55.
Amini
,
A. R.
,
Laurencin
,
C. T.
, and
Nukavarapu
,
S. P.
,
2012
, “
Bone Tissue Engineering: Recent Advances and Challenges
,”
Crit. Rev. Biomed. Eng.
,
40
(
5
), pp.
363
408
.
56.
Karageorgiou
,
V.
, and
Kaplan
,
D.
,
2005
, “
Porosity of 3d Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
,
26
(
27
), pp.
5474
5491
.
57.
Razi
,
T.
,
Niknami
,
M.
, and
Alavi Ghazani
,
F.
,
2014
, “
Relationship Between Hounsfield Unit in CT Scan and Gray Scale in CBCT.
,”
J. Dental Res. Dental Clin. Dental Prospects
,
8
(
2
), pp.
107
110
.
58.
Kaneko
,
T. S.
,
Pejcic
,
M. R.
,
Tehranzadeh
,
J.
, and
Keyak
,
J. H.
,
2003
, “
Relationships Between Material Properties and CT Scan Data of Cortical Bone With and Without Metastatic Lesions
,”
Med. Eng. Phys.
,
25
(
6
), pp.
445
454
.
59.
Schileo
,
E.
,
Dall’Ara
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Schotkamp
,
T.
,
Baleani
,
M.
, and
Viceconti
,
M.
,
2008
, “
An Accurate Estimation of Bone Density Improves the Accuracy of Subject-Specific Finite Element Models
,”
J. Biomech.
,
41
(
11
), pp.
2483
2491
.
60.
Ohs
,
N.
,
Collins
,
C. J.
, and
Atkins
,
P. R.
,
2020
, “
Validation of HR-pQCT Against Micro-CT for Morphometric and Biomechanical Analyses: A Review
,”
Bone Reports
,
13
(
Suppl. 5
), p.
100711
.
61.
Metcalf
,
L. M.
,
Dall’Ara
,
E.
,
Paggiosi
,
M. A.
,
Rochester
,
J. R.
,
Vilayphiou
,
N.
,
Kemp
,
G. J.
, and
McCloskey
,
E. V.
,
2018
, “
Validation of Calcaneus Trabecular Microstructure Measurements by HR-pQCT
,”
Bone
,
106
(
6
), pp.
69
77
.
62.
Burghardt
,
A. J.
,
Kazakia
,
G. J.
, and
Majumdar
,
S.
,
2007
, “
A Local Adaptive Threshold Strategy for High Resolution Peripheral Quantitative Computed Tomography of Trabecular Bone
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1678
1686
.
63.
Nazarian
,
A.
,
Snyder
,
B. D.
,
Zurakowski
,
D.
, and
Müller
,
R.
,
2008
, “
Quantitative Micro-Computed Tomography: A Non-Invasive Method to Assess Equivalent Bone Mineral Density
,”
Bone
,
43
(
2
), pp.
302
311
.
64.
Dassault Systems
,
2019
, “
Abaqus 3DEXPERIENCE R2019x
.”
65.
Gushue
,
D. L.
,
Houck
,
J.
, and
Lerner
,
A. L.
,
2005
, “
Rabbit Knee Joint Biomechanics: Motion Analysis and Modeling of Forces During Hopping
,”
J. Orthop. Res.
,
23
(
4
), pp.
735
742
.
66.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R. R. A.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Softw.
,
135
(
5
), p.
102662
.
67.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
,
van Mulbregt
,
P.
, and
SciPy 1.0 Contributors
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.
68.
Polak
,
S. J.
,
Levengood
,
S. K.
,
Wheeler
,
M. B.
,
Maki
,
A. J.
,
Clark
,
S. G.
, and
Johnson
,
A. J.
,
2011
, “
Analysis of the Roles of Microporosity and BMP-2 on Multiple Measures of Bone Regeneration and Healing in Calcium Phosphate Scaffolds
,”
Acta Biomater.
,
7
(
4
), pp.
1760
1771
.
69.
Lan Levengood
,
S. K.
,
Polak
,
S. J.
,
Poellmann
,
M. J.
,
Hoelzle
,
D. J.
,
Maki
,
A. J.
,
Clark
,
S. G.
,
Wheeler
,
M. B.
, and
Johnson
,
A. J.
,
2010
, “
The Effect of BMP-2 on Micro- and Macroscale Osteointegration of Biphasic Calcium Phosphate Scaffolds With Multiscale Porosity
,”
Acta Biomater.
,
6
(
8
), pp.
3283
3291
.
You do not currently have access to this content.