Abstract

Multi-objective optimization (MOO) problems with computationally expensive constraints are commonly seen in real-world engineering design. However, metamodel-based design optimization (MBDO) approaches for MOO are often not suitable for high-dimensional problems and often do not support expensive constraints. In this work, the situational adaptive Kreisselmeier and Steinhauser (SAKS) method was combined with a new multi-objective trust region optimizer (MTRO) strategy to form the SAKS-MTRO method for MOO problems with expensive black-box constraint functions. The SAKS method is an approach that hybridizes the modeling and aggregation of expensive constraints and adds an adaptive strategy to control the level of hybridization. The MTRO strategy uses a combination of objective decomposition and K-means clustering to handle MOO problems. SAKS-MTRO was benchmarked against four popular multi-objective optimizers and demonstrated superior performance on average. SAKS-MTRO was also applied to optimize the design of a semiconductor substrate and the design of an industrial recessed impeller.

References

1.
Pérez
,
J.
,
Orosa
,
J.
, and
Grueiro
,
T.
,
2016
, “
A Three-Dimensional CFD Simulation Study to Reduce Heat Stress in Ships
,”
Appl. Therm. Eng.
,
94
, pp.
413
420
.
2.
Díaz-Ovalle
,
C.
,
Martínez-Zamora
,
R.
,
González-Alatorre
,
G.
,
Rosales-Marines
,
L.
, and
Lesso-Arroyo
,
R.
,
2017
, “
An Approach to Reduce the Pre-heating Time in a Convection Oven via CFD Simulation
,”
Food Bioprod. Process.
,
102
, pp.
98
106
.
3.
Rahnamayan
,
S.
, and
Wang
,
G. G.
,
2009
, “
Toward Effective Initialization for Large-Scale Search Spaces
,”
WSEAS Trans. Syst.
,
8
(
3
), pp.
355
367
.
4.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1999
, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
,
36
(
1
), pp.
275
286
.
5.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems with Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscipl. Optim.
,
41
(
2
), pp.
219
241
.
6.
Srinivas
,
N.
, and
Deb
,
K.
,
1995
, “
Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
7.
Horn
,
J.
,
Nafploitis
,
N.
, and
Goldberg
,
D. E.
,
1994
, “
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
,”
Proceedings of the First IEEE Conference on Evolutionary Computation
,
Piscataway, NJ
,
June 27–29
, pp.
82
87
.
8.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
9.
Zhou
,
A.
,
Qu
,
B.-Y.
,
Li
,
H.
,
Zhao
,
S.-Z.
,
Suganthan
,
P. N.
, and
Zhang
,
Q.
,
2011
, “
Multiobjective Evolutionary Algorithms: A Survey of the State of the Art
,”
Swarm Evol. Comput.
,
1
(
1
), pp.
32
49
.
10.
Zhang
,
Q.
, and
Li
,
H.
,
2007
, “
MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
,”
IEEE Trans. Evol. Comput.
,
11
(
6
), pp.
712
731
.
11.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.
12.
Zitzler
,
E.
, and
Künzli
,
S.
,
2004
, “
Indicator-Based Selection in Multiobjective Search
,”
Parallel Problem Solving From Nature—PPSN VIII
,
Berlin
,
Sept. 18–22
.
13.
Brockhoff
,
D.
, and
Zitzler
,
E.
,
2007
, “
Improving Hypervolume-Based Multiobjective Evolutionary Algorithms by Using Objective Reduction Methods
,”
IEEE Congress on Evolutionary Computation
,
Singapore
,
Sept. 25–28
, pp.
2086
2093
.
14.
Hasanoglu
,
M. S.
, and
Dolen
,
M.
,
2018
, “
Multi-objective Feasibility Enhanced Particle Swarm Optimization
,”
Eng. Optim.
,
50
(
12
), pp.
2013
2037
.
15.
Chugh
,
T.
,
Sindhya
,
K.
,
Hakanen
,
J.
, and
Miettinen
,
K.
,
2019
, “
A Survey on Handling Computationally Expensive Multiobjective Optimization Problems With Evolutionary Algorithms
,”
Soft Comput.
,
23
(
9
), pp.
3137
3166
.
16.
Coello
,
C.
, and
Martinez
,
S.
,
2013
, “
MOEA/D Assisted by RBF Networks for Expensive Multi-objective Optimization Problems
,”
Genetic and Evolutionary Computation Conference
,
New York
.
17.
Zhu
,
J.
,
Wang
,
Y.-J.
, and
Collette
,
M.
,
2013
, “
A Multi-objective Variable-Fidelity Optimization Method for Genetic Algorithms
,”
Engi. Optim.
,
46
(
4
), pp.
521
542
.
18.
Regis
,
R.
,
2016
, “
Multi-objective Constrained Black-Box Optimization Using Radial Basis Function Surrogates
,”
Comput. Sci.
,
16
, pp.
140
155
.
19.
Singh
,
P.
,
Couckuyt
,
I.
,
Ferranti
,
F.
, and
Dhaene
,
T.
,
2014
, “
A Constrained Multi-objective Surrogate-Based Optimization Algorithm
,”
IEEE Trans. Evol. Comput.
, pp.
3080
3087
.
20.
Tabatabaei
,
M.
,
Hakanen
,
J.
,
Hartikainen
,
M.
,
Miettinen
,
K.
, and
Sindhya
,
K.
,
2015
, “
A Survey on Handling Computationally Expensive Multiobjective Optimization Problems Using Surrogates: Non-nature Inspired Methods
,”
Struct. Multidiscipl. Optim.
,
52
(
1
), pp.
1
25
.
21.
Wilson
,
B.
,
Cappelleri
,
D.
,
Simpson
,
T. W.
, and
Frecker
,
M.
,
2001
, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Eng. Optim.
,
2
(
1
), pp.
31
50
.
22.
Su
,
R.
,
Gui
,
L.
, and
Fan
,
Z.
,
2011
, “
Multi-objective Optimization for Bus Body With Strength and Rollover Safety Constraints Based on Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
44
(
3
), pp.
431
441
.
23.
Yang
,
B. S.
,
Yeun
,
Y. S.
, and
Ruy
,
W.-S.
,
2002
, “
Managing Approximation Models in Multiobjective Optimization
,”
Struct. Multidiscipl. Optim.
,
24
(
2
), pp.
141
156
.
24.
Shan
,
S.
, and
Wang
,
G. G.
,
2004
, “
An Efficient Pareto Set Identification Approach for Multi-objective Optimization on Black-Box Functions
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
866
874
.
25.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-objective Optimization Methods for Engineering
,”
Struct. Multidiscipl. Optim.
,
26
(
6
), pp.
369
395
.
26.
Cheng
,
G.
,
Gjernes
,
T.
, and
Gary Wang
,
G.
,
2018
, “
An Adaptive Aggregation-Based Approach for Expensively Constrained Black-Box Optimization Problems
,”
ASME J. Mech. Des.
,
140
(
9
), p.
091402
.
27.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051009
.
28.
Raspanti
,
C.
,
Bandoni
,
J.
, and
Biegler
,
L.
,
2000
, “
New Strategies for Flexibility Analysis and Design Under Uncertainty
,”
J. Comput. Chem. Eng.
,
24
(
9–10
), pp.
2193
2209
.
29.
Kreisselmeier
,
G.
, and
Steinhauser
,
R.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,”
IFAC Proceedings Volumes
,
12
(
7
), pp.
113
117
.
30.
Poon
,
N.
, and
Martins
,
J.
,
2007
, “
An Adaptive Approach to Constraint Aggregation Using Adjoint Sensitivity Analysis
,”
J. Struct. Multidiscipl. Optim.
,
34
(
1
), pp.
61
73
.
31.
Cheng
,
G. H.
,
Younis
,
A.
,
Haji Hajikolaei
,
K.
, and
Gary Wang
,
G.
,
2015
, “
Trust Region Based MPS Method for Global Optimization of High Dimensional Design Problems
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021407
.
32.
Lloyd
,
S. P.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.
33.
Tizhoosh
,
H. R.
,
2005
, “
Opposition-Based Learning: A New Scheme for Machine Intelligence
,”
International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA-IAWTIC)
,
Vienna, Austria
,
Nov. 28–30
, pp.
695
701
.
34.
Schaumann
,
E.
,
Balling
,
R.
, and
Day
,
K.
,
1998
, “
Genetic Algorithms with Multiple Objectives
,”
Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
St. Louis, MO
,
Sept. 2–4
, pp.
2114
2123
.
35.
Tan
,
P.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2006
,
Introduction to Data Mining
,
Pearson Education
,
Boston, MA
.
36.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2007
, “
k-means++: The Advantages of Careful Seeding
,”
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
,
New Orleans, LA
,
Jan. 7–9
, pp.
1027
1035
.
37.
Rahnamayan
,
S.
,
Wang
,
G. G.
, and
Ventresca
,
M.
,
2012
, “
An Intuitive Distance-Based Explanation of Opposition-Based Sampling
,”
J. Appl. Soft Comput.
,
12
(
9
), pp.
2828
2839
.
38.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C.
, and
da Fonseca
,
V.
,
2003
, “
Performance Assessment of Multiobjective Optimizers—An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
.
39.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
40.
Durillo
,
J.
,
Nebro
,
A.
,
Luna
,
F.
,
Dorronsoro
,
B.
, and
Alba
,
E.
,
2011
, “
jMetal: A Java Framework for Multi-objective Optimization
,”
Adv. Eng. Softw.
,
42
(
10
), pp.
760
771
.
41.
Bringmann
,
K.
, and
Friedrich
,
T.
,
2012
, “
Approximating the Least Hypervolume Contributor: Np-Hard in General, But Fast in Practice
,”
Theor. Comput. Sci.
,
425
, pp.
104
116
.
42.
Nowak
,
K.
,
Märtens
,
M.
, and
Izzo
,
D.
,
2014
, “
Empirical Performance of the Approximation of the Least Hypervolume Contributor
,”
International Conference on Parallel Problem Solving From Nature
,
Ljubljana, Slovenia
.
43.
Biscani
,
F.
,
Izzo
,
D.
, and
Yam
,
C.
,
2010
, “
A Global Optimization Toolbox for Massively Parallel Engineering Optimization
,”
ICATT 2010: International Conference on Astrodynamics Tools and Techniques
,
Madrid, Spain
,
May 3-6
.
44.
Izzo
,
D.
,
2012
, “
PyGMO and PyKEP: Open Source Tools for Massively Parallel Optimization in Astrodynamics (the Case of Interplanetary Trajectory Optimization)
,”
Proceedings of the International Conference on Astrodynamics Tools and Techniques—ICATT (2012)
,
Noordwijk, Netherlands
.
46.
Hasanoglu
,
M. S.
, “
MOFEPSO: Multi-objective feasibility enhanced particle swarm
,” MATLAB Central File Exchange, 1 Feb 2021, https://www.mathworks.com/matlabcentral/fileexchange/68990-mofepso-multi-objective-feasibility-enhanced-particle-swarm
47.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.
48.
Hsu
,
B.
,
Ho
,
C.
,
Lee
,
F.
, and
Chen
,
T.
,
2010
, “
A Coreless Technology Overview for Packaging Substrates
,”
2010 5th International Microsystems Packaging Assembly and Circuits Technology Conference
,
Taipei, Taiwan
,
Oct. 20–22
, pp.
1
4
.
49.
Tang
,
T.
,
Lan
,
A.
,
Tsai
,
J.
,
Chang
,
I.
, and
Chen
,
E.
,
2014
, “
Flip Chip Packaging With Pre-molded Coreless Substrate
,”
2014 IEEE 16th Electronics Packaging Technology Conference
,
Singapore
,
Dec. 3–5
, pp.
200
203
.
50.
Hwang
,
Y.
,
Ou
,
T.
, and
Su
,
W.
,
2017
, “
2nd International Conference on Precision Machinery and Manufacturing Technology
,”
2nd International Conference on Precision Machinery and Manufacturing Technology
,
Kenting, Taiwan
,
May 19–21
.
51.
Lan
,
C.-Y.
,
2013
, “
A Trace-Embedded Coreless Substrate Technique
,”
SiP Global Summit
,
Taichung
.
52.
Chao
,
S.-H.
,
Hung
,
C.-P.
,
Chen
,
M.
,
Lee
,
Y.
,
Huang
,
J.
,
Kao
,
G.
, and
Luh
,
D.-B.
,
2015
,
An Embedded Trace FCCSP Substrate Without Glass Cloth
,
Department of Industrial Design, National Cheng Kung University
,
Tainan
.
53.
Gjernes
,
T.
,
2014
, “
Optimization of Centrifugal Slurry Pumps Through Computational Fluid Dynamics
,”
Master thesis
,
School of Mechatronic Systems Engineering, Simon Fraser University
.
54.
Hock
,
W.
, and
Schittkowski
,
K.
,
1981
,
Test Examples for Nonlinear Programming Codes, Secaucus
,
Springer-Verlag
,
New Jersey
.
55.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2005
, “Scalable Test Problems for Evolutionary Multiobjective Optimization,”
Evolutionary Multiobjective Optimization
,
Springer
,
London
, pp.
105
145
.
56.
Floudas
,
C.
, and
Pardalos
,
P.
,
1990
,
A Collection of Test Problems for Constrained Global Optimization Algorithms
,
Springer-Verlag New York, Inc.
,
New York
.
You do not currently have access to this content.