Abstract

Architected elastomeric beam networks have great potential for energy absorption, multi-resonant vibration isolation, and multi-bandgap elastic wave control, due to the reconfigurability and programmability of their mechanical buckling instabilities. However, navigating this design space is challenging due to bifurcations between mono- and bistable beam designs, inherent geometric nonlinearities, and the strong dependence of buckling properties on beam geometry. To investigate these challenges, we developed a Bayesian optimization framework to control the equilibrium states of an inclined elastomeric beam, while also tuning the energy to transition between these configurations. Leveraging symmetry to reduce the design space, the beam shape is parameterized using a Fourier series representation. A penalty method is developed to include monostable designs in objective functions with dependencies on bistable features, enabling monostable results to still be incorporated in the Gaussian process surrogate and contribute to the optimization process. Two objectives are optimized in this study, including the position of the second stable equilibrium configuration and the ratio of output to input energy between the two stable states. A scalarized multi-objective optimization is also carried out to study the trade-off between equilibrium position and the energetics of transition between the stable states. The predicted designs are qualitatively verified through experimental testing. Collectively, the study explores a new parameter space for beam buckling, introduces a penalty method to regularize between mono- and bistable domains, and provides a library of beams as building blocks to assemble and analyze in future studies.

References

1.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
2.
Harne
,
R.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
3.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2012
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
4.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson’s Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
5.
Emmanuele
,
B.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
.
6.
dell’Isola
,
F.
,
Maurini
,
C.
, and
Porfiri
,
M.
,
2004
, “
Passive Damping of Beam Vibrations Through Distributed Electric Networks and Piezoelectric Transducers: Prototype Design and Experimental Validation
,”
Smart Mater. Struct.
,
13
(
2
), p.
299
.
7.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Conner Seepersad
,
C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
J. Acoust. Vib.
,
136
(
3
), p.
031009
.
8.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: for Vibration Control, Energy Harvesting and Sensing
,
John Wiley & Sons
,
West Sussex, UK
.
9.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), p.
052211
.
10.
James
,
K. A.
, and
Waisman
,
H.
,
2016
, “
Layout Design of a Bi-stable Cardiovascular Stent Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
869
890
.
11.
Bruns
,
T. E.
,
Sigmund
,
O.
, and
Tortorelli
,
D. A.
,
2002
, “
Numerical Methods for the Topology Optimization of Structures That Exhibit Snap-Through
,”
Int. J. Numer. Methods Eng.
,
55
(
10
), pp.
1215
1237
.
12.
Overvelde
,
J. T.
,
Shan
,
S.
, and
Bertoldi
,
K.
,
2012
, “
Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape
,”
Adv. Mater.
,
24
(
17
), pp.
2337
2342
.
13.
Overvelde
,
J. T.
, and
Bertoldi
,
K.
,
2014
, “
Relating Pore Shape to the Non-linear Response of Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
64
, pp.
351
366
.
14.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
15.
Ochoa
,
O. O.
, and
Reddy
,
J. N.
,
1992
,
Finite Element Analysis of Composite Laminates
,
Springer
,
Dordrecht
. 10.1007/978-94-015-7995-7.
16.
Bhattacharyya
,
A.
,
Conlan-Smith
,
C.
, and
James
,
K. A.
,
2019
, “
Design of a Bi-stable Airfoil With Tailored Snap-Through Response Using Topology Optimization
,”
Comput. Aided Des.
,
108
, pp.
42
55
.
17.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
18.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data
,
Springer-Verlag
,
New York
.
19.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Proceedings of the NIPS
, pp.
2951
2959
.
Arxiv: 1206.2944
.
20.
Calandra
,
R.
,
Gopalan
,
N.
,
Seyfarth
,
A.
,
Peters
,
J.
, and
Deisenroth
,
M. P.
,
2016
, “
Bayesian Optimization for Learning Gait Under Uncertainty
,”
Ann. Math. Artif. Intell.
,
76
(
1–2
), pp.
5
23
.
21.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
22.
Klatt
,
T.
, and
Haberman
,
M. R.
,
2013
, “
A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-on-Large Multiscale Material Model
,”
J. Appl. Phys.
,
114
(
3
), p.
033503
.
23.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Shahan
,
D.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041404
.
24.
Morris
,
C.
,
Bekker
,
L.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures With Applications to Negative Stiffness Metamaterials and Microstereolithography
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111415
.
25.
Messac
,
A.
,
Sundararaj
,
G.
,
Tappeta
,
R.
, and
Renaud
,
J.
,
2000
, “
Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers
,”
AIAA J.
,
38
(
6
), pp.
1084
1091
.
26.
Athan
,
T.
, and
Papalambros
,
P.
,
1996
, “
A Note on Weighted Criteria Methods for Compromise Solutions in Multi-objective Optimization
,”
Eng. Optim.
,
27
(
2
), pp.
155
176
.
27.
Hufenbach
,
W.
, and
Gude
,
M.
,
2002
, “
Analysis and Optimisation of Multistable Composites Under Residual Stresses
,”
Compos. Struct.
,
55
(
3
), pp.
319
327
.
28.
Betts
,
D. N.
,
Kim
,
H. A.
, and
Bowen
,
C. R.
,
2012
, “
Optimization of Stiffness Characteristics for the Design of Bistable Composite Laminates
,”
AIAA J.
,
50
(
10
), pp.
2211
2218
.
29.
Sharpe
,
C.
,
Morris
,
C.
,
Goldsberry
,
B.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2017
, “
Bayesian Network Structure Optimization for Improved Design Space Mapping for Design Exploration With Materials Design Applications
,”
Proceedings of the IDETC/CIE
,
Cleveland, OH
,
August
, p. V02BT03A004.
30.
Sharpe
,
C.
,
Wiest
,
T.
,
Wang
,
P.
, and
Seepersad
,
C. C.
,
2019
, “
A Comparative Evaluation of Supervised Machine Learning Classification Techniques for Engineering Design Applications
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121404
.
31.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
.
32.
Deng
,
H.
,
Cheng
,
L.
,
Liang
,
X.
,
Hayduke
,
D.
, and
To
,
A. C.
,
2020
, “
Topology Optimization for Energy Dissipation Design of Lattice Structures Through Snap-Through Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112641
.
33.
ABAQUS Analysis User’s Manual
,
2014
,
Version 6.14-1
,
Dassault Systémes Simulia Corp.
,
Providence, RI
.
34.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1948
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
,
US Government Printing Office 55
.
35.
Gardner
,
J. R.
,
Kusner
,
M. J.
,
Xu
,
Z. E.
,
Weinberger
,
K. Q.
, and
Cunningham
,
J. P.
,
2014
, “
Bayesian Optimization With Inequality Constraints
,”
Proceedings of the 31st ICML
,
32
(
2
), pp.
937
945
.
36.
Couckuyt
,
I.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2014
, “
Fast Calculation of Multiobjective Probability Improvement and Expected Improvement Criteria for Pareto Optimization
,”
J. Glob. Optim.
,
60
(
3
), pp.
575
594
.
You do not currently have access to this content.