Abstract

Design-for-manufacturing (DFM) concepts have traditionally focused on design simplification; this is highly effective for relatively simple, mass-produced products, but tends to be too restrictive for more complex designs. Effort in recent decades has focused on creating methods for generating and imposing specific, process-derived technical manufacturability constraints for some common problems. This paper presents an overview of the problem and its design implications, a discussion of the nature of the manufacturability constraints, and a survey of the existing approaches and methods for generating/enforcing the minimally restrictive manufacturability constraints within several design domains. Five major design perspectives or viewpoints were included in the survey, including the system design (top-down), product/component design (bottom-up), the manufacturing process-dominant case (product/component design under a specific process), the part-redesign perspective, and sustainability perspective. Manufacturability constraints within four design levels or scales were explored as well, ranging from macro-scale to sub-micro-scale design. Very little previous work was found in many areas, revealing several gaps in the literature. What is clearly needed is a more general, design-method-independent approach to collecting and enforcing manufacturability constraints.

References

1.
NASA
,
NASA Systems Engineering Handbook: NASA/Sp-2016-6105 Rev2 – Full Color Version, 12th Media Services
,
2017
.
2.
Blanchard
,
B. S.
, and
Fabrycky
,
W. J.
,
2005
,
Systems Engineering and Analysis
, 4th ed.,
Prentice Hall
,
Hoboken, NJ
.
3.
Lutters
,
E.
,
van Houten
,
F. J.
,
Bernard
,
A.
,
Mermoz
,
E.
, and
Schutte
,
C. S.
,
2014
, “
Tools and Techniques for Product Design
,”
CIRP. Ann.
,
63
(
2
), pp.
607
630
.
4.
Lee
,
E. A.
, and
Xiong
,
Y.
,
2001
, “System-Level Types for Component-Based Design,”
Embedded Software
,
T. A.
Henzinger
and
C. M.
Kirsch
, eds.,
Springer
,
Berlin Heidelberg
, pp.
237
253
.
5.
Ferrer
,
I.
,
Rios
,
J.
, and
Ciurana
,
J.
,
2009
, “
An Approach to Integrate Manufacturing Process Information in Part Design Phases
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2085
2091
.
6.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
, 3rd ed.,
Springer-Verlag
,
London, UK
.
7.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Computer-Aided Design
,
26
(
7
), pp.
505
520
.
8.
Bralla
,
J. G.
,
1998
,
Design for Manufacturability Handbook
, 2nd ed.,
McGraw-Hill Education
,
New York
.
9.
Vatanabe
,
S. L.
,
Lippi
,
T. N.
,
de Lima
,
C. R.
,
Paulino
,
G. H.
, and
Silva
,
E. C.
,
2016
, “
Topology Optimization With Manufacturing Constraints: A Unified Projection-Based Approach
,”
Adv. Eng. Softw.
,
100
, pp.
97
112
.
10.
Sutradhar
,
A.
,
Park
,
J.
,
Haghighi
,
P.
,
Kresslein
,
J.
,
Detwiler
,
D.
, and
Shah
,
J. J.
,
2017
, “
Incorporating Manufacturing Constraints in Topology Optimization Methods: A Survey
,”
Volume 1: 37th Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
ASME
.
11.
Gunasekaran
,
A.
,
1999
, “
Agile Manufacturing: A Framework for Research and Development
,”
Int. J. Prod. Econo.
,
62
(
1–2
), pp.
87
105
.
12.
Eastman
,
C.
, and
Jeng
,
T. S.
,
1999
, “
A Database Supporting Evolutionary Product Model Development for Design
,”
Auto. Constr.
,
8
(
3
), pp.
305
323
.
13.
Tay
,
F. E. H.
, and
Gu
,
J.
,
2003
, “
A Methodology for Evolutionary Product Design
,”
Eng. Comput.
,
19
, pp.
160
173
.
14.
Sunnerjo
,
S.
,
Cederfeldt
,
M.
,
Elgh
,
F.
, and
Rask
,
I.
,
2006
, “
A Transparent Design System for Iterative Product Development
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
3
), pp.
300
307
.
15.
Herrmann
,
J. W.
,
Cooper
,
J.
,
Gupta
,
S. K.
,
Hayes
,
C. C.
,
Ishii
,
K.
,
Kazmer
,
D.
,
Sandborn
,
P. A.
, and
Wood
,
W. H.
,
2004
, “
New Directions in Design for Manufacturing
,”
Volume 3d: 8th Design for Manufacturing Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
,
ASME
.
16.
Pullan
,
T. T.
,
Bhasi
,
M.
, and
Madhu
,
G.
,
2010
, “
Application of Concurrent Engineering in Manufacturing Industry
,”
Int. J. Comput. Int. Manufact.
,
23
(
5
), pp.
425
440
.
17.
Howard
,
L.
, and
Lewis
,
H.
,
2003
, “
The Development of a Database System to Optimise Manufacturing Processes During Design
,”
J. Mater. Process. Technol.
,
134
(
3
), pp.
374
382
.
18.
Li
,
Z.
,
Izquierdo
,
L. E.
,
Kokkolaras
,
M.
,
Hu
,
S. J.
, and
Papalambros
,
P. Y.
,
2008
, “
Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
044501
.
19.
Li
,
Z.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Hu
,
S. J.
,
2008
, “
Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091701
.
20.
Barnawal
,
P.
,
Dorneich
,
M. C.
,
Frank
,
M. C.
, and
Peters
,
F.
,
2017
, “
Evaluation of Design Feedback Modality in Design for Manufacturability
,”
ASME J. Mech. Des.
,
139
(
9
), p.
094503
.
21.
Hu
,
S. J.
,
2013
, “
Evolving Paradigms of Manufacturing: From Mass Production to Mass Customization and Personalization
,”
Proc. CIRP
,
7
, pp.
3
8
.
22.
Duguay
,
C. R.
,
Landry
,
S.
, and
Pasin
,
F.
,
1997
, “
From Mass Production to Flexible/agile Production
,”
Int. J. Operat. Prod. Manage.
,
17
(
12
), pp.
1183
1195
.
23.
Chu
,
W.-S.
,
Kim
,
M.-S.
,
Jang
,
K.-H.
,
Song
,
J.-H.
,
Rodrigue
,
H.
,
Chun
,
D.-M.
,
Cho
,
Y. T.
,
Ko
,
S. H.
,
Cho
,
K.-J.
,
Cha
,
S. W.
,
Min
,
S.
,
Jeong
,
S. H.
,
Jeong
,
H.
,
Lee
,
C.-M.
,
Chu
,
C. N.
, and
Ahn
,
S.-H.
,
2016
, “
From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift
,”
Int. J. Precision Eng. Manufact.-Green Technol.
,
3
, pp.
209
222
.
24.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2004
, “
Customizability Analysis in Design for Mass Customization
,”
Computer-Aided Design
,
36
(
8
), pp.
745
757
.
25.
Tseng
,
M.
,
Jiao
,
R.
, and
Wang
,
C.
,
2010
, “
Design for Mass Personalization
,”
CIRP. Ann.
,
59
(
1
), pp.
175
178
.
26.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
27.
Gries
,
M.
,
2004
, “
Methods for Evaluating and Covering the Design Space During Early Design Development
,”
Integration
,
38
(
2
), pp.
131
183
.
28.
Kim
,
I. Y.
, and
Kwak
,
B. M.
,
2002
, “
Design Space Optimization Using a Numerical Design Continuation Method
,”
Int. J. Numer. Methods Eng.
,
53
(
8
), pp.
1979
2002
.
29.
Gelsey
,
A.
,
Schwabacher
,
M.
, and
Smith
,
D.
,
1998
, “
Using Modeling Knowledge to Guide Design Space Search
,”
Artif. Intel.
,
101
(
1–2
), pp.
35
62
.
30.
Black
,
J. T.
, and
Kohser
,
R. A.
,
2011
,
DeGarmo’s Materials and Processes in Manufacturing
, 11th ed.,
Wiley
,
Hoboken, NJ
.
31.
Patterson
,
A. E.
, and
Allison
,
J. T.
,
2018
, “
Manufacturability Constraint Formulation for Design Under Hybrid Additive-subtractive Manufacturing
,”
ASME IDETC: Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference
,
Quebec City, QC, Canada
,
Aug. 26–29
,
ASME
.
32.
Karunakaran
,
K.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2010
, “
Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing
,”
Rob. Computer-Int. Manufact.
,
26
(
5
), pp.
490
499
.
33.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S.
,
2013
, “
A Review of Hybrid Manufacturing Processes – State of the Art and Future Perspectives
,”
Int. J. Comput. Int. Manufact.
,
26
(
7
), pp.
596
615
.
34.
Archenti
,
A.
,
Osterlind
,
T.
, and
Nicolescu
,
C. M.
,
2011
, “
Evaluation and Representation of Machine Tool Deformations
,”
J. Mach. Eng.
,
11
(
4
), pp.
105
117
.
35.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Donmez
,
M. A.
,
Knapp
,
W.
,
Härtig
,
F.
,
Wendt
,
K.
,
Moriwaki
,
T.
,
Shore
,
P.
,
Schmitt
,
R.
,
Brecher
,
C.
,
Würz
,
T.
, and
Wegener
,
K.
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP. Ann.
,
61
(
2
), pp.
771
791
.
36.
Borgue
,
O.
,
Müller
,
J.
,
Leicht
,
A.
,
Panarotto
,
M.
, and
Isaksson
,
O.
,
2019
, “
Constraint Replacement-Based Design for Additive Manufacturing of Satellite Components: Ensuring Design Manufacturability Through Tailored Test Artefacts
,”
Aerospace
,
6
(
11
), p.
124
.
37.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
P. R.
,
Vihinen
,
J.
, and
Ellman
,
A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081101
.
38.
Zhang
,
Y.
,
Yang
,
S.
, and
Zhao
,
Y. F.
,
2020
, “
Manufacturability Analysis of Metal Laser-based Powder Bed Fusion Additive Manufacturing – A Survey
,”
Int. J. Adv. Manuf. Technol.
,
110
, pp.
57
78
.
39.
Diniz
,
A. E.
, and
Micaroni
,
R.
,
2002
, “
Cutting Conditions for Finish Turning Process Aiming: the Use of Dry Cutting
,”
Int. J. Mach. Tools. Manuf.
,
42
(
8
), pp.
899
904
.
40.
Zhou
,
J.
,
Andersson
,
M.
, and
Ståhl
,
J.
,
2004
, “
Identification of Cutting Errors in Precision Hard Turning Process
,”
J. Mater. Process. Technol.
,
153–154
, pp.
746
750
.
41.
Yan
,
J.
, and
Li
,
L.
,
2013
, “
Multi-objective Optimization of Milling Parameters – The Trade-offs Between Energy, Production Rate and Cutting Quality
,”
J. Cleaner Prod.
,
52
, pp.
462
471
.
42.
Jiang
,
F.
,
Li
,
J.
,
Yan
,
L.
,
Sun
,
J.
, and
Zhang
,
S.
,
2010
, “
Optimizing End-milling Parameters for Surface Roughness Under Different Cooling/lubrication Conditions
,”
Int. J. Adv. Manuf. Technol.
,
51
, pp.
841
851
.
43.
Tosun
,
N.
,
2005
, “
Determination of Optimum Parameters for Multi-performance Characteristics in Drilling by Using Grey Relational Analysis
,”
Int. J. Adv. Manuf. Technol.
,
28
, pp.
450
455
.
44.
Bezerra
,
A.
,
Machado
,
A.
,
Souza
,
A.
, and
Ezugwu
,
E.
,
2001
, “
Effects of Machining Parameters When Reaming Aluminium–Silicon (SAE 322) Alloy
,”
J. Mater. Process. Technol.
,
112
(
2–3
), pp.
185
198
.
45.
Albertelli
,
P.
,
Elmas
,
S.
,
Jackson
,
M. R.
,
Bianchi
,
G.
,
Parkin
,
R. M.
, and
Monno
,
M.
,
2012
, “
Active Spindle System for a Rotary Planing Machine
,”
Int. J. Adv. Manuf. Technol.
,
63
, pp.
1021
1034
.
46.
Jackson
,
M. R.
,
Hynek
,
P.
, and
Parkin
,
R. M.
,
2007
, “
On Planing Machine Engineering Characteristics and Machined Timber Surface Quality
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
221
(
1
), pp.
17
32
.
47.
Sutherland
,
J.
,
Salisbury
,
E.
, and
Hoge
,
F.
,
1997
, “
A Model for the Cutting Force System in the Gear Broaching Process
,”
Int. J. Mach. Tools. Manuf.
,
37
(
10
), pp.
1409
1421
.
48.
Cholpadi
,
R. K.
, and
Kuttan
,
A.
,
2014
, “
Mechanistic Force Modeling for Broaching Process
,”
Int. J. Manufact. Eng.
,
2014
, pp.
1
10
.
49.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
2003
, “
On the Mechanics of the Grinding Process – Part I. Stochastic Nature of the Grinding Process
,”
Int. J. Mach. Tools. Manuf.
,
43
(
15
), pp.
1579
1593
.
50.
Tönshoff
,
H.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP. Ann.
,
41
(
2
), pp.
677
688
.
51.
Nasir
,
V.
, and
Cool
,
J.
,
2018
, “
A Review on Wood Machining: Characterization, Optimization, and Monitoring of the Sawing Process
,”
Wood Mater. Sci. Eng.
,
15
(
1
), pp.
1
16
.
52.
Sarwar
,
M.
,
Persson
,
M.
,
Hellbergh
,
H.
, and
Haider
,
J.
,
2009
, “
Measurement of Specific Cutting Energy for Evaluating the Efficiency of Bandsawing Different Workpiece Materials
,”
Int. J. Mach. Tools. Manuf.
,
49
(
12-13
), pp.
958
965
.
53.
Fan
,
Q.
,
2005
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
54.
Bouzakis
,
K.-D.
,
Kombogiannis
,
S.
,
Antoniadis
,
A.
, and
Vidakis
,
N.
,
2001
, “
Gear Hobbing Cutting Process Simulation and Tool Wear Prediction Models
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
42
51
.
55.
Maiti
,
S.
,
Ambekar
,
A.
,
Singh
,
U.
,
Date
,
P.
, and
Narasimhan
,
K.
,
2000
, “
Assessment of Influence of Some Process Parameters on Sheet Metal Blanking
,”
J. Mater. Process. Technol.
,
102
(
1–3
), pp.
249
256
.
56.
Klingenberg
,
W.
, and
Singh
,
U.
,
2003
, “
Finite Element Simulation of the Punching/blanking Process Using In-Process Characterisation of Mild Steel
,”
J. Mater. Process. Technol.
,
134
(
3
), pp.
296
302
.
57.
Olakanmi
,
E.
,
Cochrane
,
R.
, and
Dalgarno
,
K.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Progress Mater. Sci.
,
74
, pp.
401
477
.
58.
Lee
,
H.
,
Lim
,
C. H. J.
,
Low
,
M. J.
,
Tham
,
N.
,
Murukeshan
,
V. M.
, and
Kim
,
Y.-J.
,
2017
, “
Lasers in Additive Manufacturing: A Review
,”
Int. J. Precision Eng. Manufact.-Green Tech.
,
4
, pp.
307
322
.
59.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2015
, “
Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects
,”
Adv. Manufact.
,
3
, pp.
42
53
.
60.
Guvendiren
,
M.
,
Molde
,
J.
,
Soares
,
R. M.
, and
Kohn
,
J.
,
2016
, “
Designing Biomaterials for 3D Printing
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1679
1693
.
61.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
62.
Mu
,
Q.
,
Wang
,
L.
,
Dunn
,
C. K.
,
Kuang
,
X.
,
Duan
,
F.
,
Zhang
,
Z.
,
Qi
,
H. J.
, and
Wang
,
T.
,
2017
, “
Digital Light Processing 3D Printing of Conductive Complex Structures
,”
Addit. Manuf.
,
18
, pp.
74
83
.
63.
Singh
,
R.
,
2011
, “
Process Capability Study of Polyjet Printing for Plastic Components
,”
J. Mech. Sci. Tech.
,
25
, pp.
1011
1015
.
64.
Beltrán
,
N.
,
Carriles
,
F.
,
Álvarez
,
B.
,
Blanco
,
D.
, and
Rico
,
J.
,
2015
, “
Characterization of Factors Influencing Dimensional and Geometric Errors in PolyJet Manufacturing of Cylindrical Features
,”
Procedia. Eng.
,
132
, pp.
62
69
.
65.
Gaytan
,
S.
,
Cadena
,
M.
,
Karim
,
H.
,
Delfin
,
D.
,
Lin
,
Y.
,
Espalin
,
D.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2015
, “
Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
41
(
5, Part A
), pp.
6610
6619
.
66.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting – Selection Guidelines
,”
Materials
,
10
(
6
), p.
672
.
67.
Wang
,
L.
,
Felicelli
,
S. D.
, and
Pratt
,
P.
,
2008
, “
Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates
,”
Mater. Sci. Eng. A.
,
496
(
1–2
), pp.
234
241
.
68.
Izadi
,
M.
,
Farzaneh
,
A.
,
Mohammed
,
M.
,
Gibson
,
I.
, and
Rolfe
,
B.
,
2020
, “
A Review of Laser Engineered Net Shaping (LENS) Build and Process Parameters of Metallic Parts
,”
Rapid. Prototyp. J.
,
26
(
6
), pp.
1059
1078
.
69.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Peralta
,
M.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
278
289
.
70.
Zhong
,
X.
, and
J. Feng
,
Y. S
,
2019
, “
Experimental Study on Ultrasonic Consolidation Process Parameters of Ti-Al Metal Foil
,”
J. Adv. Mech. Design, Syst., Manufact.
,
13
(
2
), p.
24
.
71.
Łukaszek-Sołek
,
A.
,
Krawczyk
,
J.
,
Śleboda
,
T.
, and
Grelowski
,
J.
,
2019
, “
Optimization of the Hot Forging Parameters for 4340 Steel by Processing Maps
,”
J. Mater. Res. Technol.
,
8
(
3
), pp.
3281
3290
.
72.
Zhuang
,
W.
,
Hua
,
L.
, and
Han
,
X.
,
2018
, “
Influences of Key Forging Parameters on Gear-Tooth Deviation of Cold Forged Spur Bevel Gear
,”
Proc. Manufact.
,
15
, pp.
504
510
.
73.
Zheng
,
J.
,
Huang
,
B.
, and
Zhou
,
X.
,
2018
, “
A Low Carbon Process Design Method of Sand Casting Based on Process Design Parameters
,”
J. Cleaner. Prod.
,
197
, pp.
1408
1422
.
74.
Kumar
,
S.
,
Satsangi
,
P. S.
, and
Prajapati
,
D. R.
,
2010
, “
Optimization of Green Sand Casting Process Parameters of a Foundry by Using Taguchi’s Method
,”
Int. J. Adv. Manuf. Technol.
,
55
, pp.
23
34
.
75.
Shen
,
C.
,
Wang
,
L.
, and
Li
,
Q.
,
2007
, “
Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
412
418
.
76.
Dang
,
X.-P.
,
2014
, “
General Frameworks for Optimization of Plastic Injection Molding Process Parameters
,”
Simul. Model. Practice Theory
,
41
, pp.
15
27
.
77.
Pattnaik
,
S.
,
Karunakar
,
D. B.
, and
Jha
,
P.
,
2012
, “
Developments in Investment Casting Process—A Review
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2332
2348
.
78.
O’Mahoney
,
D.
, and
Browne
,
D. J.
,
2000
, “
Use of Experiment and An Inverse Method to Study Interface Heat Transfer During Solidification in the Investment Casting Process
,”
Exp. Therm. Fluid. Sci.
,
22
(
3–4
), pp.
111
122
.
79.
Stoughton
,
T. B.
,
2000
, “
A General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
,
42
(
1
), pp.
1
27
.
80.
Park
,
J.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Fundamental Studies on the Incremental Sheet Metal Forming Technique
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
447
453
.
81.
McEvoy
,
J. P.
,
Armstrong
,
C. G.
, and
Crawford
,
R. J.
,
1998
, “
Simulation of the Stretch Blow Molding Process of PET Bottles
,”
Adv. Polym. Technol.
,
17
(
4
), pp.
339
352
.
82.
Thibault
,
F.
,
Malo
,
A.
,
Lanctot
,
B.
, and
Diraddo
,
R.
,
2007
, “
Preform Shape and Operating Condition Optimization for the Stretch Blow Molding Process
,”
Polymer Eng. Sci.
,
47
(
3
), pp.
289
301
.
83.
Syrcos
,
G.
,
2003
, “
Die Casting Process Optimization Using Taguchi Methods
,”
J. Mater. Process. Technol.
,
135
(
1
), pp.
68
74
.
84.
Wang
,
L.
,
Makhlouf
,
M.
, and
Apelian
,
D.
,
1995
, “
Aluminium Die Casting Alloys: Alloy Composition, Microstructure, and Properties-Performance Relationships
,”
Int. Mater. Rev.
,
40
(
6
), pp.
221
238
.
85.
Liu
,
Y.
,
Chen
,
L.
,
Tang
,
H.
,
Liu
,
C.
,
Liu
,
B.
, and
Huang
,
B.
,
2006
, “
Design of Powder Metallurgy Titanium Alloys and Composites
,”
Mater. Sci. Eng. A.
,
418
(
1–2
), pp.
25
35
.
86.
Neville
,
B.
, and
Rabiei
,
A.
,
2008
, “
Composite Metal Foams Processed Through Powder Metallurgy
,”
Mater. Des.
,
29
(
2
), pp.
388
396
.
87.
El-Hofy
,
H.
,
2013
,
Fundamentals of Machining Processes
,
CRC Press
,
Boca Raton, FL
.
88.
Davim
,
J. P.
,
2008
,
Machining: Fundamentals and Recent Advances
,
Springer-Verlag
,
London, UK
.
89.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2001
,
Manufacturing Engineering and Technology
, 4th ed,
Prentice-Hall
,
Upper Saddle River, NJ
.
90.
Li
,
K.
,
Liu
,
R.
,
Bai
,
G.
, and
Zhang
,
P.
,
2006
, “
Development of An Intelligent Jig and Fixture Design System
,”
7th International Conference on Computer-Aided Industrial Design and Conceptual Design
,
Hangzhou, China
,
Nov. 17–19
,
IEEE
.
91.
Li
,
K.-M.
, and
Liang
,
S. Y.
,
2006
, “
Modeling of Cutting Temperature in Near Dry Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
416
424
.
92.
Pusavec
,
F.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production – Part I: Application on Machining Technologies
,”
J. Cleaner. Prod.
,
18
(
2
), pp.
174
184
.
93.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2016
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
,
New York, NY
.
94.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Frontiers Mech. Eng.
,
8
, pp.
215
243
.
95.
Mueller
,
B.
,
2012
, “
Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing
,”
Assembly Auto.
,
32
(
2
).
96.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2012
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
, pp.
1191
1203
.
97.
Baumers
,
M.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Hague
,
R.
,
2016
, “
The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push
,”
Tech. Forecasting Soc. Change
,
102
, pp.
193
201
.
98.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
, pp.
1147
1155
.
99.
Beddoes
,
J.
, and
Bibby
,
M.
,
1999
,
Principles of Metal Manufacturing Processes
,
Butterworth-Heinemann
,
Oxford, UK
.
100.
Campbell
,
J.
,
2015
,
Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques, and Design
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
101.
Strong
,
A. B.
,
2005
,
Plastics: Materials and Processing
, 3rd ed.,
Pearson
,
London
.
102.
Datta
,
B.
,
2014
,
Powder Metallurgy: An Advanced Technique of Processing Engineering Materials
,
Prentice-Hall
,
Upper Saddle River, NJ
.
103.
Nishida
,
I.
,
Sato
,
R.
, and
Shirase
,
K.
,
2016
, “
Process Planning System of 5-Axis Machining Center Considering Constraint Condition
,”
2016 International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
,
IEEE
.
104.
Xu
,
K.
,
Wang
,
J.
,
Chu
,
C.-H.
, and
Tang
,
K.
,
2017
, “
Cutting Force and Machine Kinematics Constrained Cutter Location Planning for Five-Axis Flank Milling of Ruled Surfaces
,”
J. Comput. Design Eng.
,
4
(
3
), pp.
203
217
.
105.
Zhang
,
Y.
,
Zhang
,
D.
, and
Wu
,
B.
,
2015
, “
An Approach for Machining Allowance Optimization of Complex Parts With Integrated Structure
,”
J. Comput. Design Eng.
,
2
(
4
), pp.
248
252
.
106.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manufact. Mater. Process.
,
2
(
4
), pp.
64
.
107.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
108.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid. Prototyp. J.
,
8
(
4
), pp.
248
257
.
109.
Patterson
,
A. E.
,
Messimer
,
S. L.
, and
Farrington
,
P. A.
,
2017
, “
Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need
,”
Technologies
,
5
(
2
), p.
15
.
110.
Rebong
,
R. E.
,
Stewart
,
K. T.
,
Utreja
,
A.
, and
Ghoneima
,
A. A.
,
2018
, “
Accuracy of Three-dimensional Dental Resin Models Created by Fused Deposition Modeling, Stereolithography, and Polyjet Prototype Technologies: A Comparative Study
,”
Angle Orthod.
,
88
(
3
), pp.
363
369
.
111.
Jones
,
S.
, and
Yuan
,
C.
,
2003
, “
Advances in Shell Moulding for Investment Casting
,”
J. Mater. Process. Technol.
,
135
(
2–3
), pp.
258
265
.
112.
Sabau
,
A. S.
, and
Viswanathan
,
S.
,
2003
, “
Material Properties for Predicting Wax Pattern Dimensions in Investment Casting
,”
Mater. Sci. Eng. A.
,
362
(
1–2
), pp.
125
134
.
113.
Jiang
,
W.
,
Fan
,
Z.
,
Liu
,
D.
,
Liao
,
D.
,
Dong
,
X.
, and
Zong
,
X.
,
2013
, “
Correlation of Microstructure With Mechanical Properties and Fracture Behavior of A356-t6 Aluminum Alloy Fabricated by Expendable Pattern Shell Casting With Vacuum and Low-Pressure, Gravity Casting and Lost Foam Casting
,”
Mater. Sci. Eng.: A
,
560
, pp.
396
403
.
114.
ASTM
,
ASTM F2792-12a: Standard Terminology for Additive Manufacturing Technologies, ASTM International
,
2012
.
115.
Feng
,
C.
,
Yan
,
S.
,
Zhang
,
R.
, and
Yan
,
Y.
,
2007
, “
Heat Transfer Analysis of Rapid ICE Prototyping Process by Finite Element Method
,”
Mater. Des.
,
28
(
3
), pp.
921
927
.
116.
Friel
,
R.
, and
Harris
,
R.
,
2013
, “
Ultrasonic Additive Manufacturing – A Hybrid Production Process for Novel Functional Products
,”
Proc. CIRP
,
6
, pp.
35
40
.
117.
Thomas
,
D.
,
2015
, “
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective
,”
Int. J. Adv. Manufact. Tech.
,
85
, pp.
1857
1876
.
118.
INCOSE
,
INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, Wiley
,
2015
.
119.
Bix
,
S.
, and
Witt
,
P.
,
2020
, “
Introducing Constraints to Improve New Product Development Performance
,”
Res.-Technol. Manage.
,
63
(
5
), pp.
29
37
.
120.
Knight
,
W.
,
1991
, “
Design for Manufacture Analysis: Early Estimates of Tool Costs for Sintered Parts
,”
CIRP. Ann.
,
40
(
1
), pp.
131
134
.
121.
Barbosa
,
G.
, and
Carvalho
,
J.
,
2013
, “
Design for Manufacturing and Assembly Methodology Applied to Aircrafts Design and Manufacturing
,”
IFAC Proc. Vol.
,
46
(
7
), pp.
116
121
.
122.
Ferrer
,
I.
,
Rios
,
J.
,
Ciurana
,
J.
, and
Garcia-Romeu
,
M.
,
2010
, “
Methodology for Capturing and Formalizing DFM Knowledge
,”
Rob. Comput.-Int. Manufact.
,
26
(
5
), pp.
420
429
.
123.
Vallhagen
,
J.
,
Isaksson
,
O.
,
Söderberg
,
R.
, and
Wärmefjord
,
K.
,
2013
, “
A Framework for Producibility and Design for Manufacturing Requirements in a System Engineering Context
,”
Proc. CIRP
,
11
, pp.
145
150
.
124.
Bajaj
,
M.
,
Peak
,
R.
,
Wilson
,
M.
,
Kim
,
I.
,
Thurman
,
T.
,
Jothishankar
,
M.
,
Benda
,
M.
,
Ferreira
,
P.
, and
Stori
,
J.
,
2003
, “
Towards Next-Generation Design-for-Manufacturability (DFM) Frameworks for Electronics Product Realization
,”
IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium. IEMT 2003
,
San Jose, CA
,
July 16–18
,
IEEE
.
125.
Dong
,
H.
, and
Wood
,
W. H.
,
2003
, “
Issues in Integration of Design and Manufacturing for Mechatronics
,” A
SME IDETC: Volume 3a: 8th Design for Manufacturing Conference
,
Chicago, IL
,
Sept. 2–6
,
ASME
.
126.
Wood
,
W. H.
, and
Agogino
,
A. M.
,
2005
, “
Decision-Based Conceptual Design: Modeling and Navigating Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
2
11
.
127.
Shetty
,
D.
,
Poudel
,
N.
, and
Ososanya
,
E.
,
2015
, “
Design of Robust Mechatronics Embedded Systems by Integration of Virtual Simulation and Mechatronics Platform
,”
Volume 2B: Advanced Manufacturing
,
Houston, TX
,
Nov. 13–19
,
ASME
.
128.
Berselli
,
G.
,
Borghesan
,
G.
,
Brandi
,
M.
,
Melchiorri
,
C.
,
Natale
,
C.
,
Palli
,
G.
,
Pirozzi
,
S.
, and
Vassura
,
G.
,
2009
, “
Integrated Mechatronic Design for a New Generation of Robotic Hands
,”
IFAC Proc. Vol.
,
42
(
16
), pp.
8
13
.
129.
Lee
,
F. C.
,
Wang
,
S.
, and
Li
,
Q.
,
2020
, “
Next Generation of Power Supplies-Design for Manufacturability
,”
IEEE Journal of Emerging and Selected Topics in Power Electronics
, pp.
1
1
. In press.
130.
Li
,
H.
,
Li
,
P.
,
Gao
,
L.
,
Zhang
,
L.
, and
Wu
,
T.
,
2015
, “
A Level Set Method for Topological Shape Optimization of 3D Structures With Extrusion Constraints
,”
Comput. Methods. Appl. Mech. Eng.
,
283
, pp.
615
635
.
131.
Mantovani
,
S.
,
Presti
,
I. L.
,
Cavazzoni
,
L.
, and
Baldini
,
A.
,
2017
, “
Influence of Manufacturing Constraints on the Topology Optimization of An Automotive Dashboard
,”
Proc. Manufact.
,
11
, pp.
1700
1708
.
132.
Fathianathan
,
M.
, and
Panchal
,
J. H.
,
2008
, “
Modelling An Ongoing Design Process Utilizing Top-Down and Bottom-Up Design Strategies
,”
Proc. Inst. Mech. Eng. B.
,
223
(
5
), pp.
547
560
.
133.
Thomas
,
M.
, and
McGarry
,
F.
,
1994
, “
Top-Down Vs. Bottom-Up Process Improvement
,”
IEEE Soft.
,
11
, pp.
12
13
.
134.
Budinoff
,
H. D.
,
McMains
,
S.
, and
Rinaldi
,
A.
,
2018
, “
An Interactive Manufacturability Analysis and Tolerance Allocation Tool for Additive Manufacturing
,”
Volume 2A: 44th Design Auto Conference
,
Quebec City, QC, Canada
,
Aug. 26–29
,
ASME
.
135.
Mirzendehdel
,
A. M.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2019
, “
Exploring Feasible Design Spaces for Heterogeneous Constraints
,”
Computer-Aided Design
,
115
, pp.
323
347
.
136.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
,
2001
, “
Design for Manufacturability of SISE Parallel Plate Forced Convection Heat Sinks
,”
IEEE Trans. Comp. Pack. Tech.
,
24
(
2
), pp.
150
158
.
137.
Guest
,
J. K.
, and
Zhu
,
M.
,
2012
, “
Casting and Milling Restrictions in Topology Optimization Via Projection-Based Algorithms
,”
Volume 3: 38th Design Automation Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
,
ASME
.
138.
Zuo
,
K.-T.
,
Chen
,
L.-P.
,
Zhang
,
Y.-Q.
, and
Yang
,
J.
,
2005
, “
Manufacturing- and Machining-Based Topology Optimization
,”
Int. J. Adv. Manuf. Technol.
,
27
, pp.
531
536
.
139.
K.
,
S. N. R.
,
Maranan
,
V.
,
Simpson
,
T. W.
,
Palmer
,
T.
, and
Dickman
,
C. J.
,
2016
, “
Application of Topology Optimization and Design for Additive Manufacturing Guidelines on An Automotive Component
,”
Volume 2A: 42nd Design Automation Conference
,
Charlotte, NC
,
Aug. 21–24
,
ASME
.
140.
Liu
,
J.
,
Yu
,
H.
, and
Ma
,
Y.
,
2016
, “
Minimum Void Length Scale Control in Level Set Topology Optimization Subject to Machining Radii
,”
Computer-Aided Design
,
81
, pp.
70
80
.
141.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing Element Transitions and Aggregated Structures
,”
CIRP. J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
142.
Sossou
,
G.
,
Demoly
,
F.
,
Montavon
,
G.
, and
Gomes
,
S.
,
2018
, “
An Additive Manufacturing Oriented Design Approach to Mechanical Assemblies
,”
J. Comput. Design Eng.
,
5
(
1
), pp.
3
18
.
143.
Lu
,
Y. A.
,
Ding
,
Y.
,
Wang
,
C.
, and
Zhu
,
L.
,
2018
, “
Tool Path Generation for Five-Axis Machining of Blisks With Barrel Cutters
,”
Int. J. Prod. Res.
,
57
(
5
), pp.
1300
1314
.
144.
Monge
,
J.
,
Vessaz
,
C.
,
Avellan
,
F.
, and
Tournier
,
C.
,
Jun
2013
, “
Integration of Machining Constraints in Design Optimization of a Guide Vane Cascade
,”
10th International Conference on Computer Aided Design
,
Bergamo Italy
.
145.
Kang
,
M.
,
Han
,
J.
, and
Moon
,
J.
,
2003
, “
An Approach for Interlinking Design and Process Planning
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
589
595
.
146.
Deja
,
M.
, and
Siemiatkowski
,
M. S.
,
2012
, “
Feature-Based Generation of Machining Process Plans for Optimised Parts Manufacture
,”
J. Intel. Manufact.
,
24
, pp.
831
846
.
147.
Gupta
,
S. K.
, and
Nau
,
D. S.
,
1995
, “
Systematic Approach to Analysing the Manufacturability of Machined Parts
,”
Computer-Aided Design
,
27
(
5
), pp.
323
342
.
148.
Mirzendehdel
,
A. M.
,
Behandish
,
M.
, and
Nelaturi
,
S.
,
2020
, “
Topology Optimization With Accessibility Constraint for Multi-Axis Machining
,”
Computer-Aided Design
,
122
, p.
102825
.
149.
Liu
,
J.
, and
Ma
,
Y. S.
,
2015
, “
3d Level-Set Topology Optimization: A Machining Feature-based Approach
,”
Struct. Multidiscipl. Optim.
,
52
, pp.
563
582
.
150.
Morris
,
N.
,
Butscher
,
A.
, and
Iorio
,
F.
,
2020
, “
A Subtractive Manufacturing Constraint for Level Set Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
61
, pp.
1573
1588
.
151.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Soft.
,
100
, pp.
161
175
.
152.
Jee
,
H.
, and
Witherell
,
P.
,
2017
, “
A Method for Modularity in Design Rules for Additive Manufacturing
,”
Rapid. Prototyp. J.
,
23
(
6
), pp.
1107
1118
.
153.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2015
, “
On Design for Additive Manufacturing: Evaluating Geometrical Limitations
,”
Rapid. Prototyp. J.
,
21
(
6
), pp.
662
670
.
154.
Maidin
,
S. B.
,
Campbell
,
I.
, and
Pei
,
E.
,
2012
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing
,”
Assembly Auto.
,
32
(
3
), pp.
235
244
.
155.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6v4
,”
J. Laser. Appl.
,
27
, p.
S14001
.
156.
Tang
,
L.
,
Zhang
,
Q.
,
Liang
,
K.
,
Zhao
,
X.
, and
Zhang
,
Z.
,
2018
, “
Discrete Optimization of Internal Part Structure Via SLM Unit Structure-Performance Database
,”
Metals
,
8
(
1
), pp.
45
.
157.
Pradel
,
P.
,
Zhu
,
Z.
,
Bibb
,
R.
, and
Moultrie
,
J.
,
2018
, “
A Framework for Mapping Design for Additive Manufacturing Knowledge for Industrial and Product Design
,”
J. Eng. Design
,
29
(
6
), pp.
291
326
.
158.
Mhapsekar
,
K.
,
McConaha
,
M.
, and
Anand
,
S.
,
2018
, “
Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051017
.
159.
Rezayat
,
H.
,
Bell
,
J. R.
,
Plotkowski
,
A. J.
, and
Babu
,
S. S.
,
2019
, “
Multi-Solution Nature of Topology Optimization and Its Application in Design for Additive Manufacturing
,”
Rapid. Prototyp. J.
,
25
(
9
), pp.
1475
1481
.
160.
Weiss
,
B.
,
Diegel
,
O.
,
Storti
,
D.
, and
Ganter
,
M.
,
2018
, “
A Process for Estimating Minimum Feature Size in Selective Laser Sintering
,”
Rapid. Prototyp. J.
,
24
(
2
), pp.
436
440
.
161.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Computer-Aided Design
,
81
, pp.
1
13
.
162.
Utley
,
E.
,
Designing for 3D Printing: Direct Metal Laser Sintering. Laser 3D Manufacturing
,
Helvajian
,
H.
,
Piqué
,
A.
,
Gu
,
B.
eds.,
SPIE
,
2018
.
163.
Thomas
,
D.
,
2009
, “
The Development of Design Rules for Selective Laser Melting
,”
Ph.D. thesis
,
Cardiff Metropolitan University
,
Cardif, UK
. Available at https://repository.cardiffmet.ac.uk/handle/10369/913
164.
Seepersad
,
C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer’s Duide for Dimensioning and Tolerancing SLS Parts
,”
Proceedings of the 2012 Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference
,
Aug. 6–8, Austin, TX
, pp.
921
931
.http://utw10945.utweb.utexas.edu/Manuscripts/2012/2012-70-Seepersad.pdf
165.
Allison
,
J.
,
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2019
, “
Powder Bed Fusion Metrology for Additive Manufacturing Design Guidance
,”
Addit. Manuf.
,
25
, pp.
239
251
.
166.
Cheng
,
B.
, and
Chou
,
Y. K.
,
2017
, “
Overhang Support Structure Design for Electron Beam Additive Manufacturing
,”
Volume 2: Additive Manufacturing Materials
,
Los Angeles, CA
,
June 4–8
,
ASME
.
167.
Ameen
,
W.
,
Al-Ahmari
,
A.
,
Mohammed
,
M.
, and
Mian
,
S.
,
2018
, “
Manufacturability of Overhanging Holes Using Electron Beam Melting
,”
Metals
,
8
(
6
), pp.
397
.
168.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2015
, “
Laser and Electron-Beam Powder-bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthopaedic Res.
,
34
(
3
), pp.
369
385
.
169.
Urbanic
,
R. J.
, and
Hedrick
,
R.
,
2016
, “
Fused Deposition Modeling Design Rules for Building Large, Complex Components
,”
Computer-Aided Design Appl.
,
13
(
3
), pp.
348
368
.
170.
Messimer
,
S.
,
Pereira
,
T.
,
Patterson
,
A.
,
Lubna
,
M.
, and
Drozda
,
F.
,
2019
, “
Full-Density Fused Deposition Modeling Dimensional Error As a Function of Raster Angle and Build Orientation: Large Dataset for Eleven Materials
,”
J. Manufact. Mater. Process.
,
3
(
1
), p.
6
.
171.
Kouhi
,
E.
,
Masood
,
S.
, and
Morsi
,
Y.
,
2008
, “
Design and Fabrication of Reconstructive Mandibular Models Using Fused Deposition Modeling
,”
Assembly Auto.
,
28
(
3
), pp.
246
254
.
172.
Carstensen
,
J. V.
,
2020
, “
Topology Optimization With Nozzle Size Restrictions for Material Extrusion-Type Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
2481
2497
.
173.
Pham
,
D. T.
, and
Ji
,
C.
,
2000
, “
Design for Stereolithography
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
214
(
5
), pp.
635
640
.
174.
Davoudinejad
,
A.
,
Diaz-Perez
,
L. C.
,
Quagliotti
,
D.
,
Pedersen
,
D. B.
,
Albajez-García
,
J. A.
,
Yagüe-Fabra
,
J. A.
, and
Tosello
,
G.
,
2018
, “
Additive Manufacturing With Vat Polymerization Method for Precision Polymer Micro Components Production
,”
Proc. CIRP
,
75
, pp.
98
102
.
175.
Campana
,
G.
, and
Mele
,
M.
,
2018
, “
An Application to Stereolithography of a Feature Recognition Algorithm for Manufacturability Evaluation
,”
J. Intel. Manufact.
,
31
, pp.
199
214
.
176.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
177.
Gardan
,
J.
,
2017
, “
Method for Characterization and Enhancement of 3D Printing by Binder Jetting Applied to the Textures Quality
,”
Assembly Auto.
,
37
(
2
), pp.
162
169
.
178.
Harzheim
,
L.
, and
Graf
,
G.
,
2005
, “
A Review of Optimization of Cast Parts Using Topology Optimization. II-Topology Optimization With Manufacturing Constraints
,”
Struct. Multidiscipl. Optim.
,
31
, pp.
388
399
.
179.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2013
, “
Casting Constraints in Structural Optimization Via a Level-Set Method
,” 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL.
180.
Wang
,
Y.
, and
Kang
,
Z.
,
2017
, “
Structural Shape and Topology Optimization of Cast Parts Using Level Set Method
,”
Int. J Numer. Methods Eng.
,
111
(
13
), pp.
1252
1273
.
181.
Gersborg
,
A. R.
, and
Andreasen
,
C. S.
,
2011
, “
An Explicit Parameterization for Casting Constraints in Gradient Driven Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
44
, pp.
875
881
.
182.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
183.
Bidkar
,
R. A.
, and
McAdams
,
D. A.
,
2009
, “
Methods for Automated Manufacturability Analysis of Injection-Molded and Die-Cast Parts
,”
Res. Eng. Design
,
21
, pp.
1
24
.
184.
Fagade
,
A.
, and
Kazmer
,
D.
,
1998
, “
Economic Design of Injection Molded Parts Using Dfm Guidelines - A Review of Two Methods for Tooling Cost Estimation
,”
Proceedings of ANTEC98
,
Atlanta, GA
,
Apr. 26–30
,
Society of Plastic Engineers
, pp.
869
873
.
185.
Fu
,
M.
,
Fuh
,
J.
, and
Nee
,
A.
,
1999
, “
Generation of Optimal Parting Line Direction Based on Undercut Features in Injection Molded Parts
,”
IIE Trans.
,
31
, pp.
947
955
.
186.
Singh
,
R.
, and
Madan
,
J.
,
2013
, “
Systematic Approach for Automated Determination of Parting Line for Die-Cast Parts
,”
Rob. Comput.-Int. Manufact.
,
29
(
5
), pp.
346
366
.
187.
Smith
,
L. N.
,
1999
, “
A Knowledge Based System for Optimum and Concurrent Design, and Manufacture by Powder Metallurgy Technology
,”
Int. J. Prod. Res.
,
37
(
1
), pp.
125
137
.
188.
Spina
,
R.
,
Spekowius
,
M.
, and
Hopmann
,
C.
,
2016
, “
Multiphysics Simulation of Thermoplastic Polymer Crystallization
,”
Mater. Des.
,
95
, pp.
455
469
.
189.
Choi
,
S.-J.
, and
Kim
,
S. K.
,
2011
, “
Multi-Scale Filling Simulation of Micro-Injection Molding Process
,”
J. Mech. Sci. Technol.
,
25
, pp.
117
124
.
190.
Niedziela
,
D.
,
Tröltzsch
,
J.
,
Latz
,
A.
, and
Kroll
,
L.
,
2011
, “
On the Numerical Simulation of Injection Molding Processes With Integrated Textile Fiber Reinforcements
,”
J. Thermoplastic Composite Mater.
,
26
(
1
), pp.
74
90
.
191.
Tercan
,
H.
,
Guajardo
,
A.
,
Heinisch
,
J.
,
Thiele
,
T.
,
Hopmann
,
C.
, and
Meisen
,
T.
,
2018
, “
Transfer-Learning: Bridging the Gap Between Real and Simulation Data for Machine Learning in Injection Molding
,”
Proc. CIRP
,
72
, pp.
185
190
.
192.
Shi
,
J.
,
Cheng
,
Z.
,
Barriere
,
T.
,
Liu
,
B.
, and
Gelin
,
J. C.
,
2017
, “
Multiphysic Coupling and Full Cycle Simulation of Microwave Sintering Applied to a Ceramic Compact Obtained by Ceramic Injection Moulding
,”
Powder. Metall.
,
60
(
5
), pp.
404
414
.
193.
Adalier
,
M.
, and
Tsatsoulis
,
C.
,
1992
, “
Redesigning for Manufacturability Using REINRED
,”
Appl. Artif. Intel.
,
6
(
3
), pp.
285
302
.
194.
Hatcher
,
G.
,
Ijomah
,
W.
, and
Windmill
,
J.
,
2011
, “
Design for Remanufacture: A Literature Review and Future Research Needs
,”
J. Cleaner. Prod.
,
19
(
17–18
), pp.
2004
2014
.
195.
Yannoulakis
,
N. J.
,
Joshi
,
S. B.
, and
Wysk
,
R. A.
,
1994
, “
Quantitative Measures of Manufacturability for Rotational Parts
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
189
198
.
196.
Hayes
,
C.
,
1996
, “
Plan-based Manufacturability Analysis and Generation of Shape-Changing Redesign Suggestions
,”
J. Intel. Manufact.
,
7
, pp.
121
132
.
197.
Lee
,
B.
, and
Saitou
,
K.
,
2002
, “
Design of Part Family Robust-to-Production Plan Variations Based on Quantitative Manufacturability Evaluation
,”
Res. Eng. Design
,
13
, pp.
199
212
.
198.
Gunasekaran
,
A.
, and
Spalanzani
,
A.
,
2012
, “
Sustainability of Manufacturing and Services: Investigations for Research and Applications
,”
Int. J. Prod. Econo.
,
140
(
1
), pp.
35
47
.
199.
Westkämper
,
E.
,
2014
, “Fields of Actions for Sustainable Growth,”
Towards the Re-Industrialization of Europe
,
E.
Westkamper
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
81
101
.
200.
Schroeder
,
P.
,
Anggraeni
,
K.
,
Sartori
,
S.
, and
Weber
,
U.
,
2017
,
Sustainable Asia: Supporting the Transition to Sustainable Consumption and Production in Asian Developing Countries
,
World Scientific Publishing
,
Singapore
.
201.
Pusavec
,
F.
,
Kramar
,
D.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production - Part II: Evaluation of Sustainable Machining Technologies
,”
J. Cleaner. Prod.
,
18
(
12
), pp.
1211
1221
.
202.
Measuring Sustainable Development
,
Insights into MONET – The Swiss Monitoring System, SFSO, SAEFL, ARE, Neuchâtel, Switzerland
,
2002
.
203.
Yoon
,
H.-S.
,
Lee
,
J.-Y.
,
Kim
,
H.-S.
,
Kim
,
M.-S.
,
Kim
,
E.-S.
,
Shin
,
Y.-J.
,
Chu
,
W.-S.
, and
Ahn
,
S.-H.
,
2014
, “
A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study
,”
Int. J. Precision Eng. Manufact.-Green Technol.
,
1
, pp.
261
279
.
204.
Priarone
,
P. C.
, and
Ingarao
,
G.
,
2017
, “
Towards Criteria for Sustainable Process Selection: On the Modelling of Pure Subtractive Versus Additive/subtractive Integrated Manufacturing Approaches
,”
J. Cleaner. Prod.
,
144
, pp.
57
68
.
205.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner. Prod.
,
137
, pp.
1573
1587
.
206.
Heilala
,
J.
,
Vatanen
,
S.
,
Tonteri
,
H.
,
Montonen
,
J.
,
Lind
,
S.
,
Johansson
,
B.
, and
Stahre
,
J.
,
2008
, “
Simulation-Based Sustainable Manufacturing System Design
,” Winter Simulation Conference, Miami, FL, pp.
1922
1930
.
207.
Bruzzone
,
A. A. G.
,
Anghinolfi
,
D.
,
Paolucci
,
M.
, and
Tonellia
,
F.
,
2012
, “
Energy-aware Scheduling for Improving Manufacturing Process Sustainability: A Mathematical Model for Flexible Flow Shops
,”
CIRP. Ann.
,
61
(
1
), pp.
459
462
.
208.
Fang
,
K.
,
Uhan
,
N.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2011
, “A New Shop Scheduling Approach in Support of Sustainable Manufacturing,”
Glocalized Solutions for Sustainability in Manufacturing
,
Hesselbach
,
J.
, and
Herrmann
,
C.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
305
310
.
209.
Li
,
L.
, and
Sun
,
Z.
,
2013
, “
Dynamic Energy Control for Energy Efficiency Improvement of Sustainable Manufacturing Systems Using Markov Decision Process
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
43
(
5
), pp.
1195
1205
.
210.
Pach
,
C.
,
Berger
,
T.
,
Sallez
,
Y.
,
Bonte
,
T.
,
Adam
,
E.
, and
Trentesaux
,
D.
,
2014
, “
Reactive and Energy-aware Scheduling of Flexible Manufacturing Systems Using Potential Fields
,”
Comput. Indus.
,
65
(
3
), pp.
434
448
.
211.
Helleno
,
A. L.
,
Moraes
,
A. J. I.
, and
Simon
,
A. T.
,
2017
, “
Integrating Sustainability Indicators and Lean Manufacturing to Assess Manufacturing Processes: Application Case Studies in Brazilian Industry
,”
J. Cleaner. Prod.
,
153
, pp.
405
416
.
212.
Garbie
,
I. H.
,
2015
, “
Sustainability Optimization in Manufacturing Enterprises
,”
Proc. CIRP
,
26
, pp.
504
509
.
213.
Helu
,
M.
,
Rühl
,
J.
,
Dornfeld
,
D.
,
Werner
,
P.
, and
Lanza
,
G.
,
2011
, “Evaluating Trade-offs Between Sustainability, Performance, and Cost of Green Machining Technologies,”
Globalized Solutions for Sustainability in Manufacturing
,
Hesselbach
,
J.
, and
Herrmann
,
C.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
195
200
.
214.
Lu
,
T.
,
Gupta
,
A.
,
Jayal
,
A. D.
,
Badurdeen
,
F.
,
Feng
,
S. C.
,
Dillon
Jr.,
O. W.
, and
Jawahir
,
I. S.
,
2011
, “A Framework of Product and Process Metrics for Sustainable Manufacturing,”
Advances in Sustainable Manufacturing
,
Seliger
,
J.
,
Khraisheh
,
M. M.
,
Jawahir
,
I.
eds.,
Springer
,
Berlin, Heidelberg
, pp.
331
336
.
215.
Harun
,
K.
, and
Cheng
,
K.
,
2011
, “
Life Cycle Simulation (LCS) Approach to the Manufacturing Process Design for Sustainable Manufacturing
,”
IEEE International Symposium on Assembly and Manufacturing (ISAM)
,
Tampere, Finland
, pp.
1
8
.
216.
Kwak
,
M.
, and
Kim
,
H.
,
2015
, “
Design for Life-cycle Profit with Simultaneous Consideration of Initial Manufacturing and End-of-life Remanufacturing
,”
Eng. Optim.
,
47
(
1
), pp.
18
35
.
217.
Takata
,
S.
,
Kirnura
,
F.
,
M. van Houten
,
F. J. A.
,
Westkamper
,
E.
,
Shpitalni
,
M.
,
Ceglarek
,
D.
, and
Lee
,
J.
,
2004
, “
Maintenance: Changing Role in Life Cycle Management
,”
CIRP. Ann.
,
53
(
2
), pp.
643
655
.
218.
Anderson
,
D. M.
,
2014
,
Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production
,
World Scientific Publishing
,
Singapore
.
219.
Seliger
,
G.
,
2007
,
Sustainability in Manufacturing
,
Springer
,
Berlin, Heidelberg
.
220.
An
,
S.
,
Martinez
,
P.
,
Al-Hussein
,
M.
, and
Ahmad
,
R.
,
2020
, “
Automated Verification of 3d Manufacturability for Steel Frame Assemblies
,”
Auto. Const.
,
118
, p.
103287
.
221.
Eiliat
,
H.
, and
Urbanic
,
J.
,
2018
, “
Visualizing, Analyzing, and Managing Voids in the Material Extrusion Process
,”
Int. J. Adv. Manufact. Tech.
,
96
, pp.
4095
4109
.
222.
Brandt
,
M.
,
Sun
,
S. J.
,
Leary
,
M.
,
Feih
,
S.
,
Elambasseril
,
J.
, and
Liu
,
Q. C.
,
2013
, “
High-value SLM Aerospace Components: From Design to Manufacture
,”
Adv. Mater. Res.
,
633
, pp.
135
147
.
223.
Guest
,
J. K.
,
2008
, “
Imposing Maximum Length Scale in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
, pp.
463
473
.
224.
Lazarov
,
B. S.
, and
Wang
,
F.
,
2017
, “
Maximum Length Scale in Density Based Topology Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
318
, pp.
826
844
.
225.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Computer-Aided Design Appl.
,
5
(
5
), pp.
686
696
.
226.
Yu
,
H. Z.
,
Cross
,
S. R.
, and
Schuh
,
C. A.
,
2017
, “
Mesostructure Optimization in Multi-material Additive Manufacturing: A Theoretical Perspective
,”
J. Mater. Sci.
,
52
, pp.
4288
4298
.
227.
Garcia
,
D.
,
Jones
,
M. E.
,
Zhu
,
Y.
, and
Yu
,
H. Z.
,
2017
, “
Mesoscale Design of Heterogeneous Material Systems in Multi-material Additive Manufacturing
,”
J. Mater. Res.
,
33
, pp.
58
67
.
228.
Florea
,
V.
,
Pamwar
,
M.
,
Sangha
,
B.
, and
Kim
,
I. Y.
,
2019
, “
3d Multi-material and Multi-joint Topology Optimization With Tooling Accessibility Constraints
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
2531
2558
.
229.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
, pp.
1267
1281
.
230.
Gopsill
,
J. A.
,
Shindler
,
J.
, and
Hicks
,
B. J.
,
2017
, “
Using Finite Element Analysis to Influence the Infill Design of Fused Deposition Modelled Parts
,”
Progress Add. Manufact.
,
3
, pp.
145
163
.
231.
Gardan
,
J.
,
Makke
,
A.
, and
Recho
,
N.
,
2017
, “
Improving the Fracture Toughness of 3d Printed Thermoplastic Polymers by Fused Deposition Modeling
,”
Int. J. Fracture
,
210
, pp.
1
15
.
232.
Tran
,
V.-T.
,
Wei
,
Y.
,
Liau
,
W.
,
Yang
,
H.
, and
Du
,
H.
,
2017
, “
Preparing of Interdigitated Microelectrode Arrays for AC Electrokinetic Devices Using Inkjet Printing of Silver Nanoparticles Ink
,”
Micromachines
,
8
(
4
), pp.
106
.
233.
Chen
,
S.-W.
,
Li
,
H.
,
Chang
,
C.-J.
, and
Lu
,
T.-C.
,
2017
, “
Effects of Nanoscale V-shaped Pits on GaN-based Light Emitting Diodes
,”
Materials
,
10
(
2
), p.
113
.
234.
Ashman
,
S.
, and
Kandlikar
,
S. G.
,
2006
, “
A Review of Manufacturing Processes for Microchannel Heat Exchanger Fabrication
,”
Proceedings of the ASME 4th International Conference on Nanochannels, Microchannels and Minichannels, Parts A and B
,
Limerick, Ireland
,
June 19–21
, pp.
855
860
.
235.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.
236.
Romig Jr.
,
A. D.
,
Dugger
,
M. T.
, and
McWhorter
,
P. J.
,
2003
, “
Materials Issues in Microelectromechanical Devices: Science, Engineering, Manufacturability and Reliability
,”
Acta Mater.
,
51
(
19
), pp.
5837
5866
.
237.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
, pp.
1917
1928
.
238.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of An Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
239.
Lee
,
Y. H.
,
Schuh
,
J. K.
,
Ewoldt
,
R. H.
, and
Allison
,
J. T.
,
2017
, “
Enhancing Full-film Lubrication Performance Via Arbitrary Surface Texture Design
,”
ASME J. Mech. Des.
,
139
(
5
), p.
053401
.
240.
Sigmund
,
O.
,
2007
, “
Morphology-based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
, pp.
401
424
.
241.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin.
,
25
, pp.
227
239
.
242.
Baharin
,
A. F. S.
,
Ghazali
,
M. J.
, and
Wahab
,
J. A.
,
2016
, “
Laser Surface Texturing and Its Contribution to Friction and Wear Reduction: A Brief Review
,”
Indus. Lubrication Tribology
,
68
(
1
), pp.
57
66
.
243.
Gittens
,
R. A.
,
McLachlan
,
T.
,
Olivares-Navarrete
,
R.
,
Cai
,
Y.
,
Berner
,
S.
,
Tannenbaum
,
R.
,
Schwartz
,
Z.
,
Sandhage
,
K. H.
, and
Boyan
,
B. D.
,
2011
, “
The Effects of Combined Micron-/submicron-scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation
,”
Biomaterials
,
32
(
13
), pp.
3395
3403
.
244.
Dew
,
S. K.
, and
Stepanova
,
M.
,
2012
, “Directions in Nanofabrication,”
Nanofabrication: Techniques and Principles
,
Stepanova
,
M.
, and
Dew
,
S. K.
, eds.,
Springer-Verlag
,
Wien
, pp.
3
8
.
245.
Onda
,
T.
,
Shibuichi
,
S.
,
Satoh
,
N.
, and
Tsujii
,
K.
,
1996
, “
Super-Water-Repellent Fractal Surfaces
,”
Langmuir
,
12
(
9
), pp.
2125
2127
.
246.
Zhao
,
W.
,
Wang
,
L.
, and
Xue
,
Q.
,
2010
, “
Influence of Micro/Nano-Textures and Chemical Modification on the Nanotribological Property of Au Surface
,”
Colloids. Surf., A.
,
366
(
1–3
), pp.
191
196
.
247.
Chiang
,
C.
, and
Kawa
,
J.
,
2007
,
Design for Manufacturability and Yield for Nano-Scale CMOS, Integrated Circuits and Systems
,
Springer
,
Dordrecht
.
248.
Kelly
,
M. J.
,
2011
, “
Intrinsic Top-down Unmanufacturability
,”
Nanotechnology
,
22
(
24
), p.
245303
.
249.
Maruo
,
S.
,
Nakamura
,
O.
, and
Kawata
,
S.
,
1997
, “
Three-Dimensional Microfabrication With Two-Photon-Absorbed Photopolymerization
,”
Opt. Lett.
,
22
(
2
), pp.
132
134
.
250.
de Miguel
,
G.
,
Vicidomini
,
G.
,
Harke
,
B.
, and
Diaspro
,
A.
,
2016
, “Linewidth and Writing Resolution,”
Three-Dimensional Microfabrication Using Two-photon Polymerization
,
T.
Baldacchini
, ed.,
Elsevier
,
Norwich, NY
, pp.
190
220
.
251.
Waheed
,
S.
,
Cabot
,
J. M.
,
Macdonald
,
N. P.
,
Lewis
,
T.
,
Guijt
,
R. M.
,
Paull
,
B.
, and
Breadmore
,
M. C.
,
2016
, “
3D Printed Microfluidic Devices: Enablers and Barriers
,”
Lab. Chip.
,
16
, pp.
1993
2013
.
You do not currently have access to this content.