Abstract

While the modeling analysis of the kinetostatic behavior of underactuated tendon-driven robotic fingers has been largely addressed in the literature, tendon routing is often not considered by these theoretical models. The tendon routing path plays a fundamental role in defining joint torques, and subsequently, the force vectors produced by the phalanges. However, dynamic tendon behavior is difficult to predict and is influenced by many external factors including tendon friction, the shape of the grasped object, the initial pose of the fingers, and finger contact points. In this paper, we present an experimental comparison of the force performance of nine fingers, with different tendon routing configurations. We use the concept of force-isotropy, in which forces are equal and distributed on each phalanx as the optimum condition for an adaptive grasp. Our results show only some of the finger designs surveyed exhibited a partial adaptive behavior, showing distributed force for the proximal and distal phalanxes throughout grasping cycles, while other routings resulted in only a single phalanx remaining in contact with the object.

References

1.
Rea
,
P.
,
2011
, “On the Design of Underactuated Finger Mechanisms for Robotic Hands,”
Advances in Mechatronics
,
H.
Martinez-Alfaro
, ed.,
Intech
, pp.
131
154
.
2.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT Softhand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
. 10.1177/0278364913518998
3.
Massa
,
B.
,
Roccella
,
S.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2002
, “
Design and Development of An Underactuated Prosthetic Hand
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Washington, DC
,
May 11–15
, Vol.
4
, pp.
3374
3379
.
4.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive Sdm Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
. 10.1177/0278364909360852
5.
Zollo
,
L.
,
Roccella
,
S.
,
Guglielmelli
,
E.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2007
, “
Biomechatronic Design and Control of An Anthropomorphic Artificial Hand for Prosthetic and Robotic Applications
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
418
429
. 10.1109/TMECH.2007.901936
6.
Qiao
,
S.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2016
, “
Analysis of the Influence of Parameters Change on Effective Grasping Force of An Underactuated Robotic Hand
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, pp.
396
401
.
7.
Jung
,
S.
,
Kang
,
S.
,
Lee
,
M.
, and
Moon
,
I.
,
2007
, “
Design of Robotic Hand with Tendon-Driven Three Fingers
,”
IEEE International Conference on Control, Automation and Systems (ICCAS)
,
Seoul, South Korea
,
Oct. 17–20
, pp.
83
86
.
8.
Mutlu
,
R.
,
Alici
,
G.
, and
Spinks
,
G. M.
,
2016
, “
3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers
,”
Soft Rob.
,
3
(
3
), pp.
120
133
. 10.1089/soro.2016.0026
9.
Liu
,
Y.
,
Feng
,
F.
, and
Gao
,
Y.-F.
,
2014
, “
HIT Prosthetic Hand Based on Tendon-Driven Mechanism
,”
J. Cent. South Univ.
,
21
(
5
), pp.
1778
1791
. 10.1007/s11771-014-2124-z
10.
Lu
,
Q.
,
Clark
,
A. B.
,
Shen
,
M.
, and
Rojas
,
N.
,
2020
, “
An Origami-Inspired Variable Friction Surface for Increasing the Dexterity of Robotic Grippers
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2538
2545
. 10.1109/LRA.2020.2972833
11.
Backus
,
S. B.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2014
, “
Design of Hands for Aerial Manipulation: Actuator Number and Routing for Grasping and Perching
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
34
40
.
12.
Chen
,
W.
, and
Xiong
,
C.
,
2016
, “
On Adaptive Grasp with Underactuated Anthropomorphic Hands
,”
J. Bionic Eng.
,
13
(
1
), pp.
59
72
. 10.1016/S1672-6529(14)60160-8
13.
Cabás
,
R.
,
Cabas
,
L. M.
, and
Balaguer
,
C.
,
2006
, “
Optimized Design of the Underactuated Robotic Hand
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
982
987
.
14.
Kontoudis
,
G. P.
,
Liarokapis
,
M.
,
Vamvoudakis
,
K. G.
, and
Furukawa
,
T.
,
2019
, “
An Adaptive Actuation Mechanism for Anthropomorphic Robot Hands
,”
Front. Rob. AI
,
6
, p.
47
. 10.3389/frobt.2019.00047
15.
Ciocarlie
,
M.
,
Hicks
,
F. M.
,
Holmberg
,
R.
,
Hawke
,
J.
,
Schlicht
,
M.
,
Gee
,
J.
,
Stanford
,
S.
, and
Bahadur
,
R.
,
2014
, “
The Velo Gripper: A Versatile Single-Actuator Design for Enveloping, Parallel and Fingertip Grasps
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
753
767
. 10.1177/0278364913519148
16.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2004
, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
211
221
. 10.1109/TRA.2004.824641
17.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2004
, “
Optimal Design of 2-Phalanx Underactuated Fingers
,”
International Conference on Intelligent Manipulation and Grasping
,
July 1
, pp.
110
116
.
18.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Geometric Design of Three-Phalanx Underactuated Fingers
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
356
364
. 10.1115/1.2159029
19.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2003
, “
On the Force Capability of Underactuated Fingers
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol.
1
, pp.
1139
1145
.
20.
Inouye
,
J. M.
,
Kutch
,
J. J.
, and
Valero-Cuevas
,
F. J.
,
2014
,
Optimizing the Topology of Tendon-Driven Fingers: Rationale, Predictions and Implementation
,
R.
Balasubramanian
and
V. J.
Santos
, eds., Vol.
95
,
Springer
, pp.
247
266
.
21.
Krut
,
S.
,
2005
, “
A Force-Isotropic Underactuated Finger
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2314
2319
.
22.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
359
. 10.1016/0094-114X(78)90059-9
23.
Rizk
,
R.
,
Krut
,
S.
, and
Dombre
,
E.
,
2007
, “
Grasp-Stability Analysis of a Two-Phalanx Isotropic Underactuated Finger
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
3289
3294
.
24.
Ma
,
R.
, and
Dollar
,
A.
,
2017
, “
Yale Openhand Project: Optimizing Open-Source Hand Designs for Ease of Fabrication and Adoption
,”
IEEE Rob. Autom. Mag.
,
24
(
1
), pp.
32
40
. 10.1109/MRA.2016.2639034
25.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
IEEE International Conference on Robotics and Automation (ICRA
),
Karlsruhe, Germany
,
May 6–10
, pp.
2737
2743
.
26.
Liarokapis
,
M.
, and
Dollar
,
A. M.
,
2016
, “
Post-Contact, In-Hand Object Motion Compensation for Compliant and Underactuated Hands
,”
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
,
New York, NY
,
Aug. 26–31
, pp.
986
993
.
27.
Aukes
,
D. M.
,
Heyneman
,
B.
,
Ulmen
,
J.
,
Stuart
,
H.
,
Cutkosky
,
M. R.
,
Kim
,
S.
,
Garcia
,
P.
, and
Edsinger
,
A.
,
2014
, “
Design and Testing of a Selectively Compliant Underactuated Hand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
721
735
. 10.1177/0278364913518997
28.
Kappassov
,
Z.
,
Khassanov
,
Y.
,
Saudabayev
,
A.
,
Shintemirov
,
A.
, and
Varol
,
H. A.
,
2013
, “
Semi-Anthropomorphic 3D Printed Multigrasp Hand for Industrial and Service Robots
,”
IEEE International Conference on Mechatronics and Automation (ICMA)
,
Takamatsu, Japan
,
Aug. 4–7
, pp.
1697
1702
.
29.
Bai
,
G.
, and
Rojas
,
N.
,
2018
, “
Self-Adaptive Monolithic Anthropomorphic Finger with Teeth-Guided Compliant Cross-Four-Bar Joints for Underactuated Hands
,”
IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
,
Beijing, China
,
Nov. 6–9
, pp.
145
152
.
30.
Wen
,
L.
,
Li
,
Y.
,
Cong
,
M.
,
Lang
,
H.
, and
Du
,
Y.
,
2017
, “
Design and Optimization of a Tendon-Driven Robotic Hand
,”
IEEE International Conference on Industrial Technology (ICIT)
,
Toronto, Canada
,
Mar. 22–25
, pp.
767
772
.
You do not currently have access to this content.