Abstract

Gear tooth breakage due to bending fatigue is one of the most dangerous failure modes of gears. Therefore, the precise definition of tooth bending strength is of utmost importance in gear design. Single tooth bending fatigue (STBF) tests are usually used to study this failure mode since they allow to test gears, realized and finished with the actual industrial processes. Nevertheless, STBF tests do not reproduce exactly the loading conditions of meshing gears. The load is applied in a predetermined position, while in meshing gears, it moves along the active flank; all the teeth can be tested and have the same importance, while the actual strength of a meshing gear, practically, is strongly influenced by the strength of the weakest tooth of the gear. These differences have to be (and obviously are) taken into account when using the results of STBF tests to design gear sets. The aim of this article is to investigate in detail the first aspect, i.e. the role of the differences between two tooth root stress histories. In particular, this article presents a methodology based on high-cycle multi-axial fatigue criteria to translate STBF test data to the real working condition; residual stresses are also taken into account.

References

1.
Henriot
,
G.
,
1987
,
Ingranaggi. Trattato teorico e pratico
, Vols.
1–2
,
Tecniche Nuove
,
Milan, Italy
.
2.
Davoli
,
P.
,
Conrado
,
E.
, and
Michaelis
,
K.
,
2007
, “
Recognizing Gear Failures
,”
Machine Design
,
63
, pp.
64
67
. http://hdl.handle.net/11311/274596
3.
ISO 6336-3:2006
,
2006
,
Calculation of Load Capacity of Spur and Helical Gears Calculation of Tooth Bending Strength
,
International Organization for Standardization
.
4.
ANSI/AGMA 2001-D04
,
2004
,
Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
,
American Gear Manufacturers Association
,
Alexandria
.
5.
ISO 6336-5:2016
,
2016
,
Calculation of Load Capacity of Spur and Helical Gears Strength and Quality of Materials
,
International Organization for Standardization
.
6.
Hong
,
I. J.
,
Kahraman
,
A.
, and
Anderson
,
N.
,
2020
, “
A Rotating Gear Test Methodology for Evaluation of High-Cycle Tooth Bending Fatigue Lives Under Fully Reversed and Fully Released Loading Conditions
,”
Int. J. Fatigue
,
133
.
7.
Rao
,
S.
, and
McPherson
,
D.
,
2003
, “
Experimental Characterization of Bending Fatigue Strength in Gear Teeth.
,”
Gear Technol.
,
20
(
1
), pp.
25
32
.
8.
McPherson
,
D. R.
, and
Rao
,
S. B.
,
2008
, “
Methodology for Translating Single-Tooth Bending Fatigue Data to Be Comparable to Running Gear Data
,”
Gear Technol.
,
25
, pp.
42
51
.
9.
Stahl
,
K.
,
1999
,
Lebensdauerstatistik : Abschlussbericht : Forschungsvorhaben Nr. 304
,
FVA
,
Frankfurt, M., Frankfurt am Main
.
10.
Benedetti
,
M.
,
Fontanari
,
V.
,
Höhn
,
B.-R.
,
Oster
,
P.
, and
Tobie
,
T.
,
2002
, “
Influence of Shot Peening on Bending Tooth Fatigue Limit of Case Hardened Gears
,”
Int. J. Fatigue.
,
24
(
11
), pp.
1127
1136
.
11.
Dobler
,
F.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2015
, “
Influence of Low Temperatures on Material Properties and Tooth Root Bending Strength of Case-Hardened Gears
,”
ASME 2015 Power Transmission and Gearing Conference
,
Boston, MA
,
Aug. 2–5
, Vol.
57205
,
American Society of Mechanical Engineers
, p.
V010T11A007
.
12.
Dobler
,
D.-I. A.
,
Hergesell
,
I. M.
, and
Stahl
,
I. K.
,
2016
, “
Increased Tooth Bending Strength and Pitting Load Capacity of Fine-Module Gears
,”
Gear Technol.
,
33
(
7
), pp.
48
53
.
13.
Metals Technical Committee
,
1997
,
Single Tooth Gear Bending Fatigue Test
,
SAE International
.
14.
Winkler
,
K.
,
Schurer
,
S.
,
Tobie
,
T.
, and
Stahl
,
K.
,
2019
, “
Investigations on the Tooth Root Bending Strength and the Fatigue Fracture Characteristics of Case-Carburized and Shot-Peened Gears of Different Sizes
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
233
(
21–22
), pp.
7338
7349
.
15.
Medlin
,
D. J.
,
Cornelissen
,
B. E.
,
Matlock
,
D. K.
,
Krauss
,
G.
, and
Filar
,
R. J.
,
1999
, “
Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel
,”
SAE Trans.
,
108
(
1
), pp.
547
556
.
16.
Spice
,
J. J.
,
Matlock
,
D. K.
, and
Fett
,
G.
,
2002
, “
Optimized Carburized Steel Fatigue Performance as Assessed With Gear and Modified Brugger Fatigue Tests
,”
SAE Trans.
,
111
(
1
), pp.
589
597
.
17.
Vilela Costa
,
L.
,
Corrêa de Oliveira
,
D.
,
Wallace
,
D.
,
Lelong
,
V.
, and
Findley
,
K. O.
,
2020
, “
Bending Fatigue in Low-Pressure Carbonitriding of Steel Alloys With Boron and Niobium Additions
,”
J. Mater. Eng. Perform.
,
29
, pp.
1
10
.
18.
McPherson
,
D.
, and
Rao
,
S.
,
2000
, “Mechanical Testing of Gears,”
Mechanical Testing and Evaluation
, Vol.
8
,
K.
Howard
, and
M.
Dana
, eds.,
ASM International
,
Ohio
, pp.
861
872
.
19.
Rettig
,
H.
,
1987
, “
Ermittlung Von Zahnfußfestigkeits-kennwerten Auf Verspannungsprüfständen Und Pulsatoren–vergleich Der Prüfverfahren Und Gewonnenen Kennwerte
,”
Antriebstechnik
,
26
(
1
), pp.
51
55
.
20.
Rao
,
S. B.
,
Schwanger
,
V.
,
McPherson
,
D. R.
, and
Rudd
,
C.
,
2005
, “
Measurement and Validation of Dynamic Bending Stresses in Spur Gear Teeth
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, Vol.
4742
, pp.
755
764
.
21.
Conrado
,
E.
, and
Gorla
,
C.
,
2011
, “
Contact Fatigue Limits of Gears, Railway Wheels and Rails Determined by Means of Multiaxial Fatigue Criteria
,”
Procedia. Eng.
,
10
(
0
), pp.
965
70
.
22.
Conrado
,
E.
,
Foletti
,
S.
,
Gorla
,
C.
, and
Papadopoulos
,
I.
,
2011
, “
Use of Multiaxial Fatigue Criteria and Shakedown Theorems in Thermo-Elastic Rolling–Sliding Contact Problems
,”
Wear
,
270
(
5–6
), pp.
344
354
.
23.
De la Guerra Ochoa
,
E.
,
Echavarri Otero
,
J.
,
Chacon Tanarro
,
E.
,
Lafont Morgado
,
P.
,
Munoz-Guijosa
,
J. M.
,
Diaz Lantada
,
A.
, and
Munoz Sanz
,
J. L.
,
2014
, “
Analysis of Different Multiaxial Fatigue Criteria in the Prediction of Pitting Failure in Spur Gears
,”
Int. J. Surface Sci. Eng.
,
8
(
4
), pp.
356
379
.
24.
Hoa Ngan
,
N.
, and
Bocher
,
P.
,
2018
, “
Finite Element Analysis Simulation of the Effect of Induction Hardening on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
140
(
6
), p.
061404
.
25.
Ghribi
,
D.
, and
Octrue
,
M.
,
2014
, “
Some Theoretical and Simulation Results on the Study of the Tooth Flank Breakage in Cylindrical Gears
,”
International Gear Conference
,
Lyon, France
,
Aug. 26–28
, pp.
26
28
.
26.
Octrue
,
M.
,
Ghribi
,
D.
, and
Sainsot
,
P.
,
2018
, “
A Contribution to Study the Tooth Flank Fracture (TFF) in Cylindrical Gears
,”
Procedia Engineering
,
213
, pp.
215
226
.
27.
Hotait
,
M.
, and
Kahraman
,
A.
,
2013
, “
Estimation of Bending Fatigue Life of Hypoid Gears Using a Multiaxial Fatigue Criterion
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101005
.
28.
Savaria
,
V.
,
Bridier
,
F.
, and
Bocher
,
P.
,
2016
, “
Predicting the Effects of Material Properties Gradient and Residual Stresses on the Bending Fatigue Strength of Induction Hardened Aeronautical Gears
,”
Int. J. Fatigue.
,
85
, pp.
70
84
.
29.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
,
1997
, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int. J. Fatigue.
,
19
(
3
), pp.
219
235
.
30.
Crossland
,
B.
,
1956
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of An Alloy Steel
,”
International Conference on Fatigue of Metals
,
London, UK
,
Sept. 10–14
.
31.
ISO 6336-1:2006
,
2006
,
Calculation of Load Capacity of Spur and Helical Gears Basic Principles, Introduction and General Influence Factors
,
International Organization for Standardization
.
32.
Gorla
,
C.
,
Rosa
,
F.
,
Conrado
,
E.
, and
Concli
,
F.
,
2017
, “
Bending Fatigue Strength of Case Carburized and Nitrided Gear Steels for Aeronautical Applications
,”
Int. J. Appl. Eng. Res.
,
12
(
21
), pp.
11306
11322
.
33.
Gasparini
,
G.
,
Mariani
,
U.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Rosa
,
F.
,
2008
, “
Bending Fatigue Tests of Helicopter Case Carburized Gears: Influence of Material, Design and Manufacturing Parameters
,”
American Gear Manufacturers Association Fall Technical Meeting 2008
,
San Antonio, TX
,
Oct. 12–14
, pp.
131
142
.
34.
Gorla
,
C.
,
Conrado
,
E.
,
Rosa
,
F.
, and
Concli
,
F.
,
2018
, “
Contact and Bending Fatigue Behaviour of Austempered Ductile Iron Gears
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
6
), pp.
998
1008
.
35.
Gorla
,
C.
,
Rosa
,
F.
,
Conrado
,
E.
, and
Albertini
,
H.
,
2014
, “
Bending and Contact Fatigue Strength of Innovative Steels for Large Gears
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
228
(
14
), pp.
2469
2482
.
36.
Gorla
,
C.
,
Rosa
,
F.
,
Concli
,
F.
, and
Albertini
,
H.
,
2012
, “
Bending Fatigue Strength of Innovative Gear Materials for Wind Turbines Gearboxes: Effect of Surface Coatings
,”
ASME International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
,
American Society of Mechanical Engineers
, pp.
3141
3147
.
37.
Conrado
,
E.
,
Gorla
,
C.
,
Davoli
,
P.
, and
Boniardi
,
M.
,
2017
, “
A Comparison of Bending Fatigue Strength of Carburized and Nitrided Gears for Industrial Applications
,”
Engineering Failure Analysis Volume
,
78
, pp.
41
54
.
38.
Bonaiti
,
L.
,
Concli
,
F.
,
Gorla
,
C.
, and
Rosa
,
F.
,
2019
, “
Bending Fatigue Behaviour of 17-4 Ph Gears Produced Via Selective Laser Melting
,”
Procedia Structural Integrity
,
24
, pp.
764
774
.
39.
Colombo
,
S.
,
2019
,
Advanced Statistical Models for Bending Fatigue Characterization of Gears
,
Politecnico di Milano
,
Milan, Italy
. http://hdl.handle.net/10589/165633
40.
Moore
,
M.
, and
Evans
,
W.
,
1958
, “
Mathematical Correction for Stress in Removed Layers in X-Ray Diffraction Residual Stress Analysis
,”
SAE Trans.
,
66
(
1
), pp.
340
345
.
41.
Sikarskie
,
D.
,
1967
, “
A Series Form of Correction to Stresses Measured Using X-Ray Diffraction
,”
AIME Met. Soc. Trans.
,
239
(
4
), pp.
577
580
.
42.
Fitzpatrick
,
M.
,
Fry
,
A.
,
Holdway
,
P.
,
Kandil
,
F.
,
Shackleton
,
J.
, and
Suominen
,
L.
,
2005
,
Measurement Good Practice Guide No. 52 Determination of Residual Stresses by X-ray Diffraction
, Vol.
2
,
National Physical Laboratory
,
Teddington, Middlesex, UK
. http://eprintspublications.npl.co.uk/id/eprint/2391
43.
Lang
,
O. R.
, and
Kernen i
,
R.
,
1979
, “
Dimensionierung Komplizierter Bauteile Aus Stahl Im Bereich Der Zeit-und Dauerfestigkeit
,”
Material. Werkstofftechnik
,
10
(
1
), pp.
24
29
.
44.
Conrado
,
E.
, and
Davoli
,
P.
,
2007
, “
The ‘True’ Bending Stress in Spur Gears
,”
Gear Technol.
,
24
(
6
), pp.
52
57
.
45.
Gorla
,
C.
,
Rosa
,
F.
,
Conrado
,
E.
, and
Tesfahunegn
,
Y. A.
,
2016
, “
Combined Effects of Lead Crowning and Assembly Deviations on Meshing Characteristics of Helical Gears
,”
Int. J. Appl. Eng. Res
,
11
, pp.
11681
11694
.
46.
Aktiengesellschaft
,
M.-Z.
,
1963
,
Maag Gear-Book: Calculation and Manufacture of Gears and Gear Drives for Designers and Works Engineers
,
Maag Gear-Wheel Company
,
Zurich, Switzerland
.
You do not currently have access to this content.