Abstract

Concurrent engineering is a product development approach in which engineers simultaneously design products and processes to improve customer satisfaction, enhance product quality, and reduce product costs. While various design methodologies have been proposed to support concurrent engineering, development of a systematic methodology that comprehensively integrates product and process design is still an ongoing research need. Traditional design for assembly (DFA) has been extended to concurrently design subassemblies and assembly sequences; however, the optimum assembly sequence depends on the efficiency of the assembly line and how assembly tasks are assigned to workstations without causing extensive idle time. This study extends past approaches in the concurrent design of products and processes by integrating assembly line balancing, assembly line design, and sensitivity analysis of assembly line design in addition to assembly line sequencing. In particular, this study proposes an approach to simultaneously design products and processes by integrating (1) a liaison diagram augmented with additional information on the type of liaisons (e.g., screw fixing, snap fitting, or contacting) to find stable subassemblies and corresponding assembly tasks, (2) assembly sequencing to generate all feasible assembly sequences that satisfy requirements for stable subassembly, (3) assembly line balancing to identify all possible assignments of tasks to workstations and to find corresponding cycle times and utilization, (4) assembly line designs that include the types and number of assembly lines for each product design, and (5) sensitivity analysis to evaluate the robustness of the assembly line design.

References

1.
Clausing
,
D.
,
1993
,
Total Quality Development: A Step-by-Step Guide to World-Class Concurrent Engineering
,
ASME Press
,
New York, NY
.
2.
Prasad
,
B.
,
1996
,
Concurrent Engineering Fundamentals: Integrated Product and Process Organization
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Bralla
,
J. G.
,
1999
,
Design for Manufacturability Handbook
,
McGraw-Hill, New York
,
NY
.
4.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2011
,
Product Design for Manufacture and Assembly
,
CRC Press
,
Boca Raton, FL
.
5.
De Fazio
,
T. L.
,
Rhee
,
S. J.
, and
Whitney
,
D. E.
,
1999
, “
Design-Specific Approach to Design for Assembly for Complex Mechanical Assemblies
,”
IEEE Trans. Robot. Autom.
,
15
(
5
), pp.
869
881
. 10.1109/70.795792
6.
Zhang
,
L. L.
, and
Jiao
,
J. R.
,
2013
, “
A Graph Rewriting System for Process Platform Planning
,”
Decision Support Systems
,
54
(
2
), pp.
1174
1191
. 10.1016/j.dss.2012.11.011
7.
Suh
,
N. P.
,
1995
, “
Design and Operation of Large Systems
,”
J. Manuf. Syst.
,
14
(
3
), pp.
203
213
. 10.1016/0278-6125(95)98887-C
8.
Gedell
,
S.
,
Michaelis
,
M. T.
, and
Johannesson
,
H.
,
2011
, “
Integrated Model for Co-Development of Products and Production Systems—A Systems Theory Approach
,”
Concurrent Eng.: Res. Appl.
,
19
(
2
), pp.
139
156
. 10.1177/1063293X11406751
9.
Tolio
,
T.
,
Ceglarek
,
D.
,
ElMaraghy
,
H. A.
,
Fischer
,
A.
,
Hu
,
S. J.
,
Laperrière
,
L.
,
Newman
,
S. T.
, and
Váncza
,
J.
,
2010
, “
SPECIES—Co-Evolution of Products, Processes and Production Systems
,”
CIRP Ann.
,
59
(
2
), pp.
672
693
. 10.1016/j.cirp.2010.05.008
10.
Hu
,
S. J.
,
Ko
,
J.
,
Weyand
,
L.
,
ElMaraghy
,
H. A.
,
Lien
,
T. K.
,
Koren
,
Y.
,
Bley
,
H.
,
Chryssolouris
,
G.
,
Nasr
,
N.
, and
Shpitalni
,
M.
,
2011
, “
Assembly System Design and Operations for Product Variety
,”
CIRP Ann.
,
60
(
2
), pp.
715
733
. 10.1016/j.cirp.2011.05.004
11.
Zha
,
X. F.
,
Lim
,
S. Y. E.
, and
Fok
,
S. C.
,
1998a
, “
Integrated Intelligent Design and Assembly Planning: A Survey
,”
Int. J. Adv. Manuf. Technol.
,
14
(
9
), pp.
664
685
. 10.1007/BF01192287
12.
Demoly
,
F.
,
Yan
,
X.-T.
,
Eynard
,
B.
,
Gomes
,
S.
, and
Kiritsis
,
D.
,
2012
, “
Integrated Product Relationships Management: A Model to Enable Concurrent Product Design and Assembly Sequence Planning
,”
J. Eng. Des.
,
23
(
7
), pp.
544
561
. 10.1080/09544828.2011.629317
13.
De Fazio
,
T. L.
, and
Whitney
,
D. E.
,
1987
, “
Simplified Generation of All Mechanical Assembly Sequences
,”
IEEE J. Robot. Autom.
,
3
(
6
), pp.
640
658
. 10.1109/JRA.1987.1087132
14.
Shpitalni
,
M.
,
Elber
,
G.
, and
Lenz
,
E.
,
1989
, “
Automatic Assembly of Three-Dimensional Structure via Connectivity Graphs
,”
CIRP Ann.
,
38
(
1
), pp.
25
28
. 10.1016/S0007-8506(07)62644-4
15.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1991
, “
A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences
,”
IEEE Trans. Robot. Autom.
,
7
(
2
), pp.
228
240
. 10.1109/70.75905
16.
Baldwin
,
D. F.
,
Abell
,
T. E.
,
Lui
,
M.-C. M.
,
De Fazio
,
T. L.
, and
Whitney
,
D. E.
,
1991
, “
An Integrated Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products
,”
IEEE Trans. Robot. Autom.
,
7
(
1
), pp.
78
94
. 10.1109/70.68072
17.
Laperrière
,
L.
, and
ElMaraghy
,
H. A.
,
1996
, “
GAPP: A Generative Assembly Process Planner
,”
J. Manuf. Syst.
,
15
(
4
), pp.
282
293
. 10.1016/0278-6125(96)84553-5
18.
Zha
,
X. F.
, and
Du
,
H.
,
2002
, “
A PDES/STEP-Based Model and System for Concurrent Integrated Design and Assembly Planning
,”
Computer-Aided Des.
,
34
(
14
), pp.
1087
1110
. 10.1016/S0010-4485(01)00186-5
19.
Barnes
,
C. J.
,
Jared
,
G. E. M.
, and
Swift
,
K. G.
,
2004
, “
Decision Support for Sequence Generation in an Assembly Oriented Design Environment
,”
Robot. Computer-Integrated Manuf.
,
20
(
4
), pp.
289
300
. 10.1016/j.rcim.2003.10.013
20.
Chen
,
G.
,
Zhou
,
J.
,
Cai
,
W. C.
,
Lai
,
X.
,
Lin
,
Z.
, and
Menassa
,
R.
,
2006
, “
A Framework for an Automotive Body Assembly Process Design System
,”
Computer-Aided Des.
,
38
(
5
), pp.
531
539
. 10.1016/j.cad.2006.01.012
21.
Demoly
,
F.
,
Troussier
,
N.
,
Eynard
,
B.
,
Falgarone
,
H.
,
Fricero
,
B.
, and
Gomes
,
S.
,
2011a
, “
Proactive Assembly Oriented Design Approach Based on the Deployment of Functional Requirements
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
1
), p.
014501
(6 pages). 10.1115/1.3570572
22.
Lee
,
S.
, and
Shin
,
Y. G.
,
1993
, “
Assembly Co-Planner: Cooperative Assembly Planner Based on Subassembly Extraction
,”
J. Intelligent Manuf.
,
4
(
3
), pp.
183
198
. 10.1007/BF00123963
23.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1998
, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
Res. Eng. Des.
,
10
(
3
), pp.
150
165
. 10.1007/BF01607157
24.
Zha
,
X. F.
,
Du
,
H. J.
, and
Qiu
,
J. H.
,
2001
, “
Knowledge-based Approach and System for Assembly Oriented Design, Part I: The Approach
,”
Eng. Appl. Artificial Intelligence
,
14
(
1
), pp.
61
75
. 10.1016/S0952-1976(00)00060-9
25.
Demoly
,
F.
,
Gomes
,
S.
,
Eynard
,
B.
, and
Rivest
,
L.
,
2010
, “
PLM-Based Approach for Assembly Process Engineering
,”
Int. J. Manuf. Res.
,
5
(
4
), pp.
414
428
. 10.1504/IJMR.2010.035811
26.
Demoly
,
F.
,
Yan
,
X.-T.
,
Eynard
,
B.
,
Rivest
,
L.
, and
Gomes
,
S.
,
2011b
, “
An Assembly-Oriented Design Framework for Product Structure Engineering and Assembly Sequence Planning
,”
Robot. Computer-Integrated Manuf.
,
27
(
1
), pp.
33
46
. 10.1016/j.rcim.2010.05.010
27.
Prenting
,
T. O.
, and
Battaglin
,
R. M.
,
1964
, “
The Precedence Diagram: A Tool for Analysis in Assembly Line Balancing
,”
J. Ind. Eng.
,
XV
(
4
), pp.
208
213
.
28.
Scholl
,
A.
,
1999
,
Balancing and Sequencing of Assembly Lines
,
Physica-Verlag
,
Heidelberg, NY
.
29.
Becker
,
C.
, and
Scholl
,
A.
,
2006
, “
A Survey on Problems and Methods in Generalized Assembly Line Balancing
,”
Eur. J. Operational Res.
,
168
(
3
), pp.
694
715
. 10.1016/j.ejor.2004.07.023
30.
Scholl
,
A.
, and
Becker
,
C.
,
2006
, “
State-of-the-Art Exact and Heuristic Solution Procedures for Simple Assembly Line Balancing
,”
Eur. J. Operational Res.
,
168
(
3
), pp.
666
693
. 10.1016/j.ejor.2004.07.022
31.
Thomopoulos
,
N. T.
,
1967
, “
Line Balancing-Sequencing for Mixed-Model Assembly
,”
Manage. Sci.
,
14
(
2
), pp.
B-59
B-75
. 10.1287/mnsc.14.2.B59
32.
Thomopoulos
,
N. T.
,
1970
, “
Mixed Model Line Balancing With Smoothed Station Assignments
,”
Manage. Sci.
,
16
(
9
), pp.
593
603
. 10.1287/mnsc.16.9.593
33.
Rekiek
,
B.
,
De Lit
,
P.
, and
Delchambre
,
A.
,
2000
, “
Designing Mixed-Product Assembly Lines
,”
IEEE Trans. Robot. Autom.
,
16
(
3
), pp.
268
280
. 10.1109/70.850645
34.
Bukchin
,
J.
,
Dar-El
,
E. M.
, and
Rubinovitz
,
J.
,
2002
, “
Mixed Model Assembly Line Design in a Make-To-Order Environment
,”
Comput. Ind. Eng.
,
41
(
4
), pp.
405
421
. 10.1016/S0360-8352(01)00065-1
35.
Pastor
,
R.
,
Andrés
,
C.
,
Duran
,
A.
, and
Pérez
,
M.
,
2002
, “
Tabu Search Algorithms for an Industrial Multi-Product and Multi-Objective Assembly Line Balancing Problem, With Reduction of the Task Dispersion
,”
J. Oper. Res. Soc.
,
53
(
12
), pp.
1317
1323
. 10.1057/palgrave.jors.2601457
36.
Guðlaugsson
,
T. V.
,
Ravn
,
P. M.
,
Mortensen
,
N. H.
, and
Hvam
,
L.
,
2017
, “
Modelling Production System Architectures in the Early Phases of Product Development
,”
Concurrent Eng.: Res. Appl.
,
25
(
2
), pp.
136
150
. 10.1177/1063293X16669396
37.
Pinto
,
P. A.
,
Dannenbring
,
D. G.
, and
Khumawala
,
B. M.
,
1983
, “
Assembly Line Balancing With Processing Alternatives: An Application
,”
Manage. Sci.
,
29
(
7
), pp.
817
830
. 10.1287/mnsc.29.7.817
38.
Rubinovitz
,
J.
,
Bukchin
,
J.
, and
Lenz
,
E.
,
1993
, “
RALB—A Heuristic Algorithm For Design and Balancing of Robotic Assembly Lines
,”
CIRP Ann.
,
42
(
1
), pp.
497
500
. 10.1016/S0007-8506(07)62494-9
39.
Levitin
,
G.
,
Rubinovitz
,
J.
, and
Shnits
,
B.
,
2006
, “
A Genetic Algorithm for Robotic Assembly Line Balancing
,”
Eur. J. Operational Res.
,
168
(
3
), pp.
811
825
. 10.1016/j.ejor.2004.07.030
40.
Bukchin
,
J.
, and
Tzur
,
M. D.
,
2000
, “
Design of Flexible Assembly Line to Minimize Equipment Cost
,”
IIE Trans.
,
32
(
7
), pp.
585
598
https://doi.org/10.1080/07408170008967418.
41.
Bukchin
,
J.
, and
Rubinovitz
,
J.
,
2003
, “
A Weighted Approach for Assembly Line Design With Station Paralleling and Equipment Selection
,”
IIE Trans.
,
35
(
1
), pp.
73
85
. 10.1080/07408170304429
42.
Graves
,
S. C.
, and
Redfield
,
C. H.
,
1988
, “
Equipment Selection and Task Assignment for Multiproduct Assembly System Design
,”
Int. J. Flexible Manuf. Syst.
,
1
(
1
), pp.
31
50
. 10.1007/BF00713158
43.
Abbas
,
M.
, and
ElMaraghy
,
H.
,
2018
, “
Co-Platforming of Products and Assembly Systems
,”
Omega
,
78
, pp.
5
20
. 10.1016/j.omega.2018.01.005
44.
Stadzisz
,
P. C.
, and
Henrioud
,
J. M.
,
1998
, “
An Integrated Approach for the Design of Multi-Product Assembly Systems
,”
Comput. Ind.
,
36
(
1–2
), pp.
21
29
. 10.1016/S0166-3615(97)00094-8
45.
De Lit
,
P.
,
Delchambre
,
A.
, and
Henrioud
,
J.-M.
,
2003
, “
An Integrated Approach for Product Family and Assembly System Design
,”
IEEE Trans. Robot. Autom.
,
19
(
2
), pp.
324
334
. 10.1109/TRA.2003.808853
46.
Wang
,
H.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2013
, “
Utilizing Variant Differentiation to Mitigate Manufacturing Complexity in Mixed-Model Assembly Systems
,”
J. Manuf. Syst.
,
32
(
4
), pp.
731
740
. 10.1016/j.jmsy.2013.09.001
47.
Ko
,
J.
, and
Hu
,
S. J.
,
2009
, “
Manufacturing System Design Considering Stochastic Product Evolution and Task Recurrence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051012
(12 pages). 10.1115/1.4000095
48.
Xu
,
Z.
, and
Liang
,
M.
,
2006
, “
Integrated Planning for Product Module Selection and Assembly Line Design/Configuration
,”
Int. J. Prod. Res.
,
44
(
11
), pp.
2091
2117
. 10.1080/00207540500357146
49.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2006
, “
Co-Evolution of Product Families and Assembly Systems
,”
CIRP Ann.
,
56
(
1
), pp.
41
44
. 10.1016/j.cirp.2007.05.012
50.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2007
, “
Concurrent Product Portfolio Planning and Mixed Product Assembly Line Balancing
,”
Chin. J. Mech. Eng.
,
20
(
1
), pp.
96
99
. 10.3901/CJME.2007.01.096
51.
Bryan
,
A.
,
Wang
,
H.
, and
Abell
,
J.
,
2013
, “
Concurrent Design of Product Families and Reconfigurable Assembly Systems
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051001
(16 pages). 10.1115/1.4023920
52.
Tsutsumi
,
D.
,
Gyulaia
,
D.
,
Kovács
,
A.
,
Tipary
,
B.
,
Ueno
,
Y.
,
Nonaka
,
Y.
, and
Monostori
,
L.
,
2018
, “
Towards Joint Optimization of Product Design, Process Planning and Production Planning in Multi-Product Assembly
,”
CIRP Ann.
,
67
(
1
), pp.
441
446
. 10.1016/j.cirp.2018.04.036
53.
Whitney
,
D. E.
,
Mantripragada
,
R.
,
Adams
,
J. D.
, and
Rhee
,
S. J.
,
1999
, “
Designing Assemblies
,”
Res. Eng. Des.
,
11
(
4
), pp.
229
253
. 10.1007/s001630050017
54.
Wu
,
T.
, and
O’Grady
,
P.
,
1999
, “
A Concurrent Engineering Approach to Design for Assembly
,”
Concurrent Eng.: Res. Appl.
,
7
(
3
), pp.
231
243
. 10.1177/1063293X9900700305
55.
Wygant
,
R. M.
,
1989
, “
A Comparison of Computerized Predetermined Time Systems
,”
Comput. Ind. Eng.
,
17
(
1–4
), pp.
480
485
. 10.1016/0360-8352(89)90109-5
56.
Maynard
,
H. B.
,
Stegemerten
,
G. J.
, and
Schwab
,
J. L.
,
1948
,
McGraw-Hill Book Co.
,
New York, NY
.
57.
Singer
,
G.
,
Golan
,
M.
, and
Cohen
,
Y.
,
2014
, “
From Product Documentation to a ‘Method Prototype’ and Standard Times: A New Technique for Complex Manual Assembly
,”
Int. J. Prod. Res.
,
52
(
2
), pp.
507
520
. 10.1080/00207543.2013.836613
58.
Cho
,
H.
,
Lee
,
S.
, and
Park
,
J.
,
2014
, “
Time Estimation Method for Manual Assembly Using MODAPTS Technique in the Product Design Stage
,”
Int. J. Prod. Res.
,
52
(
12
), pp.
3595
3613
. 10.1080/00207543.2013.878480
59.
Anzanello
,
M. J.
, and
Fogliatto
,
F. S.
,
2007
, “
Learning Curve Modelling of Work Assignment in Mass Customized Assembly Lines
,”
Int. J. Prod. Res.
,
45
(
13
), pp.
2919
2938
. 10.1080/00207540600725010
You do not currently have access to this content.