Abstract

The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing (TM). To leverage this design freedom, designers must emphasize opportunistic design for AM (DfAM), i.e., design techniques that leverage AM capabilities. Additionally, designers must also emphasize restrictive DfAM, i.e., design considerations that account for AM limitations, to ensure that their designs can be successfully built. Therefore, designers must adopt a “dual” design mindset—emphasizing both, opportunistic and restrictive DfAM—when designing for AM. However, to leverage AM capabilities, designers must not only generate creative ideas for AM but also select these creative ideas during the concept selection stage. Design educators must specifically emphasize selecting creative ideas in DfAM, as ideas perceived as infeasible through the traditional design for manufacturing lens may now be feasible with AM. This emphasis could prevent creative but feasible ideas from being discarded due to their perceived infeasibility. While several studies have discussed the role of DfAM in encouraging creative idea generation, there is a need to investigate concept selection in DfAM. In this paper, we investigated the effects of four variations in DfAM education: (1) restrictive, (2) opportunistic, (3) restrictive followed by opportunistic (R-O), and (4) opportunistic followed by restrictive (O-R), on students’ concept selection process. We compared the creativity of the concepts generated by students to the creativity of the concepts they selected. The creativity of designs was measured on four dimensions: (1) uniqueness, (2) usefulness, (3) technical goodness, and (4) overall creativity. We also performed qualitative analyses to gain insight into the rationale provided by students when making their design decisions. From the results, we see that only teams from the restrictive and dual O-R groups selected ideas of higher uniqueness and overall creativity. In contrast, teams from the dual R-O DfAM group selected ideas of lower uniqueness compared with the mean uniqueness of ideas generated. Finally, we see that students trained in opportunistic DfAM emphasized minimizing build material the most, whereas those trained only in restrictive DfAM emphasized minimizing build time. These results highlight the need for DfAM education to encourage AM designers to not just generate creative ideas but also have the courage to select them for the next stage of design.

References

References
1.
Campbell
,
I.
,
Bourell
,
D.
, and
Gibson
,
I.
,
2012
, “
Additive Manufacturing: Rapid Prototyping Comes of Age
,”
Rapid Prototyp. J.
,
18
(
4
), pp.
255
258
. 10.1108/13552541211231563
2.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
5
(
5
), pp.
686
696
. 10.3722/cadaps.2008.686-696
3.
Rosen
,
D. W.
,
2007
, “
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
,”
18th Solid Freeform Fabrication Symposium, SFF 2007
,
Austin, TX
, pp.
402
415
.
4.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
MacHado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
368
(
1917
), pp.
1999
2032
. 10.1098/rsta.2010.0010
5.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
. 10.1109/TBME.2010.2044178
6.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
217
(
1
), pp.
31
40
. 10.1243/095440603762554596
7.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
8.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
8
. 10.1145/2366145.2366149
9.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
1–6
), pp.
585
594
. 10.1080/16864360.2007.10738493
10.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms with Embedded Components
,”
Proc. 2002 ASME Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.
,
Montreal, Canada
,
Sept. 29–Oct. 2
.
11.
Doubrovski
,
E. L.
,
Tsai
,
E. Y.
,
Dikovsky
,
D.
,
Geraedts
,
J. M. P.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
CAD Comput. Aided Des.
,
60
, pp.
3
13
. 10.1016/j.cad.2014.05.010
12.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
. 10.1115/1.4037251
13.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
CAD Comput. Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
14.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2016
, “
Investigation of Part Distortions as a Result of Hybrid Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
23
32
. 10.1016/j.rcim.2015.06.001
15.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
16.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
17.
Boschetto
,
A.
, and
Bottini
,
L.
,
2016
, “
Design for Manufacturing of Surfaces to Improve Accuracy in Fused Deposition Modeling
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
103
114
. 10.1016/j.rcim.2015.07.005
18.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2016
, “
Finishing of Fused Deposition Modeling Parts by CNC Machining
,”
Robot. Comput. Integr. Manuf.
,
41
, pp.
92
101
. 10.1016/j.rcim.2016.03.004
19.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
2nd International Conference on Mechanical and Automobile Engineering.
,
Singapore
,
Apr. 28–29
.
20.
Rietzschel
,
E. F.
,
Nijstad
,
B. A.
, and
Stroebe
,
W.
,
2006
, “
Productivity is not Enough: A Comparison of Interactive and Nominal Brainstorming Groups on Idea Generation and Selection
,”
J. Exp. Soc. Psychol.
,
42
(
2
), pp.
244
251
. 10.1016/j.jesp.2005.04.005
21.
Floriane
,
L.
,
Frédéric
,
S.
,
Gianluca
,
D. A.
, and
Marc
,
L. C.
,
2016
, “
AM Knowledge Integration to Foster Innovation Process: A Methodological Proposal
,”
Virtual Concept Workshop 2016: Major Trends in Product Design
,
Bordeaux, France
,
March
, pp.
1
5
.
22.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2018
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021703
. 10.1115/1.4041928
23.
Richter
,
T.
,
Watschke
,
H.
,
Schumacher
,
F.
, and
Vietor
,
T.
,
2018
, “
Exploitation of Potentials of Additive Manufacturing in
Ideation Workshops
,”
Proceedings of The Fifth International Conference on Design Creativity (ICDC 2018)
,
University of Bath, Bath, UK
,
Jan. 31–Feb. 2
, pp.
1
8
.
24.
Watschke
,
H.
,
Bavendiek
,
A.-K.
,
Giannakos
,
A.
, and
Vietor
,
T.
,
2017
, “
A Methodical Approach to Support Ideation for Additive Manufacturing in Design Education
,”
ICED17 21st Int. Conf. Eng. Des.
,
5
(
DS87-5
), pp.
41
50
.
25.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Teaching Design Freedom: Understanding the Effects of Variations in Design for Additive Manufacturing Education on Students’ Creativity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
094501
. 10.1115/1.4046065
26.
Rietzschel
,
E. F.
,
Nijstad
,
B. A.
, and
Stroebe
,
W.
,
2010
, “
The Selection of Creative Ideas After Individual Idea Generation: Choosing Between Creativity and Impact
,”
Br. J. Psychol.
,
101
(
1
), pp.
47
68
. 10.1348/000712609X414204
27.
Kazerounian
,
K.
, and
Foley
,
S.
,
2007
, “
Barriers to Creativity in Engineering Education: A Study of Instructors and Students Perceptions
,”
ASME J. Mech. Des.
,
129
(
7
), pp.
761
768
. 10.1115/1.2739569
28.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2015
, “
How Engineering Teams Select Design Concepts: A View Through the Lens of Creativity
,”
Des. Stud.
,
38
, pp.
111
138
. 10.1016/j.destud.2015.03.001
29.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
N. A.
,
2021
, “
Fresh in My Mind! Investigating the Effects of the Order of Presenting Opportunistic and Restrictive Design for Additive Manufacturing Content on Creativity
,”
J. Eng. Des.
http://dx.doi.org/10.1080/09544828.2021.1876843
30.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
. 10.1115/1.4044324
31.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
, and
Yang
,
M. C.
,
,
2012
,
Product Design and Development
, 7th ed.,
McGraw-Hill Education
.
32.
Koen
,
P.
,
Ajamian
,
G.
,
Burkart
,
R.
,
Clamen
,
A.
,
Davidson
,
J.
,
D’Amore
,
R.
,
Elkins
,
C.
,
Herald
,
K.
,
Incorvia
,
M.
,
Johnson
,
A.
,
Karol
,
R.
,
Seibert
,
R.
,
Slavejkov
,
A.
, and
Wagner
,
K.
,
2001
, “
Providing Clarity and a Common Language to the ‘Fuzzy Front End’
,”
Res. Technol. Manag.
,
44
(
2
), pp.
46
55
. 10.1080/08956308.2001.11671418
33.
Stempfle
,
J.
, and
Badke-Schaub
,
P.
,
2002
, “
Thinking in Design Teams—An Analysis of Team Communication
,”
Des. Stud.
,
23
(
5
), pp.
473
496
. 10.1016/S0142-694X(02)00004-2
34.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
Boulder, CO
.
35.
Ward
,
T. B.
,
Smith
,
S. M.
, and
Finke
,
R. A.
,
1999
, “Creative Cognition,”
Handbook of Creativity
,
R. J.
Sternberg
, ed.,
Cambridge University Press
,
Cambridge
, pp.
189
212
.
36.
Campbell
,
D. T.
,
1960
, “
Blind Variation and Selective Retentions in Creative Thought as in Other Knowledge Processes
,”
Psychol. Rev.
,
67
(
6
), pp.
380
400
. 10.1037/h0040373
37.
Huang
,
H. Z.
,
Liu
,
Y.
,
Li
,
Y.
,
Xue
,
L.
, and
Wang
,
Z.
,
2013
, “
New Evaluation Methods for Conceptual Design Selection Using Computational Intelligence Techniques
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
733
746
. 10.1007/s12206-013-0123-x
38.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Optim. Eng.
,
6
(
1
), pp.
85
115
. 10.1023/B:OPTE.0000048538.35456.45
39.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Engineering Design
,
Springer London
,
London
.
40.
Calantone
,
R. J.
, and
Schmidt
,
J. B.
,
2002
, “
Escalation of Commitment During New Product Development
,”
J. Acad. Mark. Sci.
,
30
(
2
), pp.
103
118
. 10.1177/03079459994362
41.
Cooper
,
R. G.
,
1990
, “
Stage-Gate Systems: A New Tool for Managing new Products
,”
Bus. Horiz.
,
33
(
3
),
44
54
. 10.1016/0007-6813(90)90040-I
42.
Pugh
,
S.
,
1991
,
Total Design: Integrated Methods for Successful Product Engineering
,
Addison-Wesley
,
Reading, MA
.
43.
Hauser
,
J. R.
, and
Clausing
,
D.
,
1988
, “
The House of Quality
,”
Harv. Bus. Rev.
,
34
(
3
), pp.
63
73
.
44.
Saaty
,
T. L.
,
2008
, “
Decision Making With the Analytic Hierarchy Process
,”
Int. J. Serv. Sci.
,
1
(
1
), p.
83
.
45.
López-Mesa
,
B.
, and
Bylund
,
N.
,
2011
, “
A Study of the Use of Concept Selection Methods From Inside a Company
,”
Res. Eng. Des.
,
22
(
1
), pp.
7
27
. 10.1007/s00163-010-0093-2
46.
Toh
,
C. A.
,
Miele
,
L. M.
, and
Miller
,
S. R.
,
2016
, “
Which One Should I Pick ? Concept Selection in Engineering Design Industry
,”
Proc. ASME 2015 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.
,
Boston, MA
,
Aug. 2–5
.
47.
Kruger
,
C.
, and
Cross
,
N.
,
2006
, “
Solution Driven Versus Problem Driven Design: Strategies and Outcomes
,”
Des. Stud.
,
27
(
5
), pp.
527
548
. 10.1016/j.destud.2006.01.001
48.
Cooper
,
R. G.
,
2008
, “
Perspective: The Stage-Gate Idea-to-Launch Process—Update, What’s New, and Nexgen Systems
,”
J. Prod. Innov. Manag.
,
25
(
3
), pp.
213
232
. 10.1111/j.1540-5885.2008.00296.x
49.
Bylund
,
N.
,
2006
, “
Concept Selection in the Automotive Industry With Examples
,”
International Design Conference—DESIGN 2016
,
Dubrovnik, Croatia
,
May 15–18
.
50.
Batory
,
D.
, and
O’Malley
,
S.
,
1992
, “
The Design and Implementation of Hierarchical Software Systems With Reusable Components
,”
ACM Trans. Softw. Eng. Methodol.
,
1
(
4
), pp.
355
398
. 10.1145/136586.136587
51.
Zhang
,
P.
,
Sadler
,
C. M.
,
Lyon
,
S. A.
, and
Martonosi
,
M.
,
2005
, “
Hardware Design Experiences in ZebraNet
,”
Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys'04)
,
New York
,
Association for Computing Machinery
, pp.
227
238
. https://doi.org/10.1145/1031495.1031522
52.
Shah
,
J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
. 10.1016/S0142-694X(02)00034-0
53.
Racheva
,
Z.
,
Daneva
,
M.
, and
Buglione
,
L.
,
2008
, “
Supporting the Dynamic Reprioritization of Requirements in Agile Development of Software Products
,”
2008 2nd Int. Work. Softw. Prod. Manag. ISWPM’08, (i).
,
Barcelona, Spain
,
Sept. 9
.
54.
Kudrowitz
,
B. M.
, and
Wallace
,
D.
,
2013
, “
Assessing the Quality of Ideas From Prolific, Early-Stage Product Ideation
,”
J. Eng. Des.
,
24
(
2
), pp.
120
139
. 10.1080/09544828.2012.676633
55.
Saaty
,
T. L.
, and
Vargas
,
L. G.
,
2003
,
Models, Methods, Concepts & Applications of the Analytic Hierarchy Process
,
Springer Science & Business Media
,
London
.
56.
Simonson
,
I.
,
1993
, “
Get Closer to Your Customers by Understanding How They Make Choices
,”
Calif. Manage. Rev.
,
35
(
4
), pp.
68
84
. 10.2307/41166755
57.
Kahneman
,
D.
, and
Tversky
,
A.
,
1979
, “
Prospect Theory: An Analysis of Decision Under Risk
,”
Econometrica
,
47
(
2
), pp.
263
292
. 10.2307/1914185
58.
Hammond
,
J. S.
,
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1998
, “
The Hidden Traps in Decision Making
,”
Harv. Bus. Rev.
,
84
, p.
1
.
59.
Stanovich
,
K. E.
, and
West
,
R. F.
,
2003
, “
Individual Differences in Reasoning: Implications for the Rationality Debate?
,”
Behav. Brain Sci.
,
26
(
4
), p.
527
. 10.1017/S0140525X03240115
60.
Stanovich
,
K. E.
, and
West
,
R. F.
,
1998
, “
Individual Differences in Rational Thought
,”
J. Exp. Psychol. Gen.
,
127
(
2
), pp.
161
188
. 10.1037/0096-3445.127.2.161
61.
Nikander
,
J. B.
,
Liikkanen
,
L. A.
, and
Laakso
,
M.
,
2014
, “
The Preference Effect in Design Concept Evaluation
,”
Des. Stud.
,
35
(
5
), pp.
473
499
. 10.1016/j.destud.2014.02.006
62.
Zheng
,
X.
, and
Miller
,
S.
,
2019
, “
Is Ownership Bias Bad? The Influence of Idea Goodness and Creativity on Design Professionals Concept Selection Practices
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021106
. 10.1115/1.4042081
63.
Toh
,
C. A.
,
Patel
,
A. H.
,
Strohmetz
,
A. A.
, and
Miller
,
S. R.
,
2015
, “
My Idea is Best! Ownership Bias and its Influence on Engineering Concept Selection
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
. https://doi.org/10.1115/DETC2015-46478
64.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
. 10.1016/0142-694X(91)90003-F
65.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2016
, “
Choosing Creativity : The Role of Individual Risk and Ambiguity Aversion on Creative Concept Selection in Engineering Design
,”
Res. Eng. Des.
,
27
(
3
), pp.
195
219
. 10.1007/s00163-015-0212-1
66.
Mellor
,
S.
,
Hao
,
L.
, and
Zhang
,
D.
,
2014
, “
Additive Manufacturing: A Framework for Implementation
,”
Int. J. Prod. Econ.
,
149
, pp.
194
201
. 10.1016/j.ijpe.2013.07.008
67.
Dwivedi
,
G.
,
Srivastava
,
S. K.
, and
Srivastava
,
R. K.
,
2017
, “
Analysis of Barriers to Implement Additive Manufacturing Technology in the Indian Automotive Sector
,”
Int. J. Phys. Distrib. Logist. Manag.
,
47
(
10
), pp.
972
991
. 10.1108/IJPDLM-07-2017-0222
68.
Saunders
,
M. N.
,
Seepersad
,
C. C.
, and
Holtta-Otto
,
K.
,
2011
, “
The Characteristics of Innovative, Mechanical Products
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021009
. 10.1115/1.4003409
69.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
CAD Comput. Aided Des.
,
30
(
5
), pp.
343
356
. 10.1016/S0010-4485(97)00083-3
70.
Kechagias
,
J.
,
Anagnostopoulos
,
V.
,
Zervos
,
S.
, and
Chryssolouris
,
G.
,
1997
, “
Estimation of Build Times in
,”
Proc. 6th Eur. Conf. Rapid Prototyp. Manuf. Univ. Nottingham
,
Nottingham, UK
,
July 1–3
, pp.
1
11
.
71.
Chen
,
C. C.
, and
Sullivan
,
P. A.
,
1996
, “
Predicting Total Build-Time and the Resultant Cure Depth of the 3D Stereolithography Process
,”
Rapid Prototyp. J.
,
2
(
4
), pp.
27
40
. 10.1108/13552549610153389
72.
Giannatsis
,
J.
,
Dedoussis
,
V.
, and
Laios
,
L.
,
2001
, “
A Study of the Build-Time Estimation Problem for Stereolithography Systems
,”
Robot. Comput. Integr. Manuf.
,
17
(
4
), pp.
295
304
. 10.1016/S0736-5845(01)00007-2
73.
Pham
,
D. T.
, and
Wang
,
X.
,
2000
, “
Prediction and Reduction of Build Times for the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
214
(
6
), pp.
425
430
. 10.1243/0954405001517739
74.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing—Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
220
(
9
), pp.
1417
1427
. 10.1243/09544054JEM517
75.
Barclift
,
M.
,
Armstrong
,
A.
,
Simpson
,
T. W.
, and
Joshi
,
S. B.
,
2017
, “
CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
11
.
76.
Michael
,
B.
,
Sanjay
,
J.
,
Timothy
,
S.
, and
Corey
,
D.
,
2016
, “
Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing
,”
Proc. 27th Annu. Int. Solid Free. Fabr. Symp.
,
44
(
3
), pp.
52
54
.
77.
Dinda
,
S.
,
Modi
,
D.
,
Simpson
,
T. W.
,
Tedia
,
S.
, and
Williams
,
C. B.
,
2017
, “
Expediting Build Time, Material, and Cost Estimation for Material Extrusion Processes to Enable Mobile Applications
,”
Proceedings of the ASME Design Engineering Technical Conference.
,
Cleveland, OH
,
Aug. 6–9
.
78.
Lindemann
,
C.
,
Reiher
,
T.
,
Jahnke
,
U.
, and
Koch
,
R.
,
2015
, “
Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
216
227
. 10.1108/RPJ-12-2014-0179
79.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “
Voxel-Based Assessment of Printability of 3D Shapes
,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
,
6671
(
LNCS
), pp.
393
404
. 10.1007/978-3-642-21569-8_34
80.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2020
, “
A Preference-Based Approach to Assess a Component’s Design Readiness for Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
8
), p.
082001
. 10.1115/1.4045604
81.
Bracken
,
J.
,
Pomorski
,
T.
,
Armstrong
,
C.
,
Prabhu
,
R.
,
Simpson
,
T. W.
,
Jablokow
,
K.
,
Cleary
,
W.
, and
Meisel
,
N. A.
,
2020
, “
Design for Metal Powder Bed Fusion: The Geometry for Additive Part Selection (GAPS) Worksheet
,”
Addit. Manuf.
,
35
, p.
101163
. 10.1016/j.addma.2020.101163
82.
Savonen
,
B. L.
,
2015
,
Criteria for Sustainable Product Design With 3D Printing in the Developing World
,
Michigan Technological University
,
Houghton, MI
.
83.
Savonen
,
B. L.
,
2019
,
A Methodology for Triaging Product Needs for Localized Manfacturing with 3D Printing in Low-Resource Environments
,
The Pennsylvania State University
,
University Park, PA
.
84.
Page
,
T. D.
,
Yang
,
S.
, and
Zhao
,
Y. F.
,
2019
, “
Automated Candidate Detection for Additive Manufacturing: A Framework Proposal
,”
Proc. Des. Soc. Int. Conf. Eng. Des.
,
1
(
1
), pp.
679
688
. 10.1017/dsi.2019.72
85.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y. F.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
. 10.1115/1.4038923
86.
Blösch-Paidosh
,
A.
,
Ahmed-Kristensen
,
S.
, and
Shea
,
K.
,
2019
, “
Evaluating the Potential of Design for Additive Manufacturing Heuristic Cards to Stimulate Novel Product Redesigns
,”
Volume 2A: 45th Design Automation Conference, American Society of Mechanical Engineers
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
10
.
87.
Design Thinking—Made By Design Lab
,” http://sites.psu.edu/madebydesign/design-thinking/,
Accessed April 24, 2019
.
88.
Ferchow
,
J.
,
Klahn
,
C.
, and
Meboldt
,
M.
,
2018
, “
Enabling Graduate Students to Design for Additive Manufacturing Through Teaching and Experience Transfer
,”
Proceedings of the 20th International Conference on Engineering and Product Design Education, E and PDE 2018.
,
London, UK
,
Sept. 6–7
.
89.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031121
10.1115/1.4045127
90.
Baer
,
J.
, and
McKool
,
S. S.
,
2009
, “Assessing Creativity Using the Consensual Assessment Technique,”
Handboof of Res. Assess. Technol. Methods, Appl. High. Educ.
,
C. S.
Schreiner
, ed.,
IGI Global
,
USA
, pp.
65
77
. 10.4018/978-1-60566-667-9.ch004
91.
Kaufman
,
J. C.
, and
Baer
,
J.
,
2012
, “
Beyond New and Appropriate: Who Decides What is Creative?
,”
Creat. Res. J.
,
24
(
1
), pp.
83
91
. 10.1080/10400419.2012.649237
92.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity vs. Understanding: How Much Expertise is Needed to Evaluate Creative Work?
,”
Psychol. Aesthetics, Creat. Arts
,
7
(
4
), pp.
332
340
. 10.1037/a0034809
93.
Shrout
,
P. E.
, and
Fleiss
,
J. L.
,
1979
, “
Intraclass Correlations: Uses in Assessing Rater Reliability
,”
Psychol. Bull.
,
86
(
2
), pp.
420
428
. 10.1037/0033-2909.86.2.420
94.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products-Three Novel Chairs
,”
Creat. Res. J.
,
11
(
4
), pp.
333
346
. 10.1207/s15326934crj1104_7
95.
Besemer
,
S. P.
, and
O’Quin
,
K.
,
1999
, “
Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample
,”
Creat. Res. J.
,
12
(
4
), pp.
329
337
. 10.1207/s15326934crj1204_6
96.
“Concept Screening Sheet,”
https://www.engr.psu.edu/britelab/resources/Concept Screening Sheets.pdf,
Accessed July 18, 2019
.
97.
Elo
,
S.
, and
Kyngäs
,
H.
,
2008
, “
The Qualitative Content Analysis Process
,”
J. Adv. Nurs.
,
62
(
1
), pp.
107
115
. 10.1111/j.1365-2648.2007.04569.x
98.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
. 10.1177/001316446002000104
99.
Sheskin
,
D. J.
,
2004
,
Handbook of Parametric and Nonparametric Statistical Procedures
,
Chapman and Hall/CRC
,
London
.
100.
Allen
,
M.
,
Poggiali
,
D.
,
Whitaker
,
K.
,
Marshall
,
T. R.
, and
Kievit
,
R. A.
,
2019
, “
Raincloud Plots: A Multi-Platform Tool for Robust Data Visualization [Version 1; Peer Review: 2 Approved]
,”
Wellcome Open Res.
,
4
(
63
), pp.
1
41
. 10.12688/wellcomeopenres.15191.1
101.
Vargha
,
A.
, and
Delaney
,
H. D.
,
1998
, “
The Kruskal-Wallis Test and Stochastic Homogeneity
,”
J. Educ. Behav. Stat.
,
23
(
2
), pp.
170
192
. 10.3102/10769986023002170
102.
Zheng
,
X.
, and
Miller
,
S. R.
,
2016
, “
How Do I Choose ? The Influence of Concept Selection Methods on Student Team Decision-Making
,”
ASME 2016 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
10
.
103.
Prabhu
,
R.
,
Bracken
,
J.
,
Armstrong
,
C. B.
,
Jablokow
,
K.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Additive Creativity: Investigating the Use of Design for Additive Manufacturing to Encourage Creativity in the Engineering Design Industry
,”
Int. J. Des. Creat. Innov.
,
8
(
4
), pp.
198
222
. 10.1080/21650349.2020.1813633
104.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
But will it Build? Assessing Student Engineering Designers’ Use of Design for Additive Manufacturing Considerations in Design Outcomes
,”
ASME J. Mech. Des.
,
142
(
9
), p.
092001
. 10.1115/1.4046071
105.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
. 10.1108/RPJ-01-2015-0011
106.
Zheng
,
X.
, and
Miller
,
S. R.
,
2017
, “
Risky Business : The Driving Factors of Creative Risk Taking
,”
Proc. ASME 2017 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.
,
Cleveland, OH
,
Aug. 6–9
.
107.
Blais
,
A.
, and
Weber
,
E. U.
,
2006
, “
A Domain-Specific Risk-Taking (DOSPERT) Scale for Adult Populations
,”
A Domain-Specific Risk-Taking Scale Adult Popul.
,
1
(
1
), pp.
33
47
. 10.1037/t13084-000
108.
Prabhu
,
R.
,
Leguarda
,
R. L.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Favoring Complexity: A Mixed Methods Exploration of Factors That Influence Concept Selection in
,”
Volume 11A: 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
,
American Society of Mechanical Engineers
.
You do not currently have access to this content.