Abstract

Owing to their tailorable physical properties, periodic cellular structures are considered promising materials for use in various engineering applications. To fully leverage the potential of such structures, it will be necessary to develop a design method that is capable of producing material layouts that are not only intricate but at the same time, readily manufacturable. This paper presents a topology optimization framework for designing well-connected and exact-sized multi-material cellular structures that are to be subjected to temperature change. In this framework, multi-material layouts within designable unit cells are represented using level-set functions and corresponding Boolean operations. The connectivity between exact-sized cells, advantageous in realizing the optimal designs, is guaranteed because of a common length scale assumed between these unit cells and the macrostructure. Increase in the number of degree-of-freedoms and concomitant storage requirements are minimized by applying the Guyan reduction method, in which the secondary degree-of-freedom is condensed out to reduce the size of the discretized model. The design capabilities of the proposed method were investigated using several numerical models. The optimized material layouts show that the presented method can create innovative designs facilitating the thermal expansion to improve the performance and enhance overall layouts’ stiffness in different ways, especially when the design is constituted of multiple materials.

References

1.
Xia
,
L.
, and
Breitkopf
,
P.
,
2015
, “
Design of Materials Using Topology Optimization and Energy-Based Homogenization Approach in Matlab
,”
Struct. Multidiscipl. Optim.
,
52
(
6
), pp.
1229
1241
.
2.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229
(
6
), pp.
27
43
.
3.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
4.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
5.
Wang
,
Y.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Kang
,
Z.
,
2014
, “
Topological Shape Optimization of Microstructural Metamaterials Using a Level Set Method
,”
Comput. Mater. Sci.
,
87
, pp.
178
186
.
6.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2020
, “
Multi-Material Topology Optimization of Lattice Structures Using Geometry Projection
,”
Comput. Methods Appl. Mech. Eng.
,
363
(
17
), p.
112895
.
7.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
8.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
CAD Comput. Aided Des.
,
83
, pp.
15
32
.
9.
Sundaram
,
S.
,
Skouras
,
M.
,
Kim
,
D. S.
, and
Matusik
,
W.
,
2019
, “
Topology Optimization and 3D Printing of Multimaterial Magnetic Actuators and Displays
,”
Sci. Adv.
,
5
(
7
), p.
eaaw1160
.
10.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
.
11.
Faure
,
A.
,
Michailidis
,
G.
,
Parry
,
G.
,
Vermaak
,
N.
, and
Estevez
,
R.
,
2017
, “
Design of Thermoelastic Multi-Material Structures With Graded Interfaces Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
56
(
4
), pp.
823
837
.
12.
Xie
,
Y. M.
,
Zuo
,
Z. H.
,
Huang
,
X.
, and
Rong
,
J. H.
,
2012
, “
Convergence of Topological Patterns of Optimal Periodic Structures Under Multiple Scales
,”
Struct. Multidiscipl. Optim.
,
46
(
1
), pp.
41
50
.
13.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
.
14.
Zhang
,
W.
, and
Sun
,
S.
,
2006
, “
Scale-Related Topology Optimization of Cellular Materials and Structures
,”
Int. J. Numer. Methods Eng.
,
68
(
9
), pp.
993
1011
.
15.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
(
17
), pp.
156
182
.
16.
Huang
,
X.
, and
Xie
,
Y.
,
2008
, “
Optimal Design of Periodic Structures Using Evolutionary Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
36
(
6
), pp.
597
606
.
17.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
Multifunctional Design of Heterogeneous Cellular Structures
,”
Struct. Multidiscipl. Optim.
,
58
(
3
), pp.
1121
1138
.
18.
Fu
,
J.
,
Xia
,
L.
,
Gao
,
L.
,
Xiao
,
M.
, and
Li
,
H.
,
2019
, “
Topology Optimization of Periodic Structures With Substructuring
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071403
.
19.
Liu
,
Z.
,
Xia
,
L.
,
Xia
,
Q.
, and
Shi
,
T.
,
2020
, “
DataDdriven Design Approach to Hierarchical Hybrid Structures With Multiple Lattice Configurations
,”
Struct. Multidiscipl. Optim.
,
61
, pp.
2227
2235
.
20.
Wilson
,
E. L.
,
1974
, “
The Static Condensation Algorithm
,”
Int. J. Numer. Methods Eng.
,
8
(
1
), pp.
198
203
.
21.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
22.
Li
,
L.
,
Du
,
Z.
, and
Kim
,
H. A.
,
2020
, “
Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method
,”
JOM
,
72
(
4
), pp.
1734
1744
.
23.
Chung
,
H.
,
Amir
,
O.
, and
Kim
,
H. A.
,
2020
, “
Level-Set Topology Optimization Considering Nonlinear Thermoelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
361
(
27
), p.
112735
.
24.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2013
, “
Stiffening of Restrained Thermal Structures Via Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
4
), pp.
731
745
.
25.
Zhu
,
J.
,
Li
,
Y.
,
Wang
,
F.
, and
Zhang
,
W.
,
2020
, “
Shape Preserving Design of Thermo-Elastic Structures Considering Geometrical Nonlinearity
,”
Struct. Multidiscipl. Optim.
,
61
, pp.
1787
1804
.
26.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
(
21
), pp.
1570
1586
.
27.
Allaire
,
G.
,
Dapogny
,
C.
,
Delgado
,
G.
, and
Michailidis
,
G.
,
2014
, “
Multi-Phase Structural Optimization Via a Level Set Method
,”
ESAIM: Control Optim. Cal. Variat.
,
20
(
2
), pp.
576
611
.
28.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Velocity Field Level Set Method for Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
11
), pp.
1315
1336
.
29.
Zhou
,
X.-Y.
,
Du
,
Z.
, and
Kim
,
H. A.
,
2019
, “
A Level Set Shape Metamorphosis With Mechanical Constraints for Geometrically Graded Microstructures
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
1
16
.
30.
Gao
,
T.
, and
Zhang
,
W.
,
2010
, “
Topology Optimization Involving Thermo-Elastic Stress Loads
,”
Struct. Multidiscipl. Optim.
,
42
, pp.
725
738
.
31.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2016
, “
Stress-Based Design of Thermal Structures Via Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
53
(
2
), pp.
253
270
.
32.
Pedersen
,
P.
, and
Pedersen
,
N. L.
,
2010
, “
Strength Optimized Designs of Thermoelastic Structures
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
681
691
.
33.
Neiferd
,
D. J.
,
Grandhi
,
R. V.
,
Deaton
,
J. D.
, and
Beran
,
P. S.
,
2018
, “
Level-Set Topology Optimization of Thermoelastic Structures—A Comparison of Compliance, Strain Energy, and Stress Objectives
,”
2018 Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 27
, p.
3577
.
34.
Zhang
,
W.
,
Yang
,
J.
,
Xu
,
Y.
, and
Gao
,
T.
,
2014
, “
Topology Optimization of Thermoelastic Structures: Mean Compliance Minimization or Elastic Strain Energy Minimization
,”
Struct. Multidiscipl. Optim.
,
49
(
3
), pp.
417
429
.
35.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Topology Optimization of Thermoelastic Structures Using Level Set Method
,”
Comput. Mech.
,
42
(
6
), p.
837
.
36.
Takalloozadeh
,
M.
,
Yoon
,
G. H.
,
Methods
,
C.
,
Mech
,
A.
,
Takalloozadeh
,
M.
, and
Yoon
,
G. H.
,
2017
, “
Development of Pareto Topology Optimization Considering Thermal Loads
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
554
579
.
37.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
.
38.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
631
643
.
39.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
40.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
41.
Osher
,
S.
,
Fedkiw
,
R.
, and
Piechor
,
K.
,
2004
, “
Level Set Methods and Dynamic Implicit Surfaces
,”
ASME Appl. Mech. Rev.
,
57
(
3
), pp.
B15
B15
.
42.
Geiss
,
M. J.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
.
43.
Dalaq
,
A. S.
,
Abueidda
,
D. W.
, and
Al-Rub
,
R. K. A.
,
2016
, “
Mechanical Properties of 3D Printed Interpenetrating Phase Composites With Novel Architectured 3D Solid-Sheet Reinforcements
,”
Compos. Part A: Appl. Sci. Manuf.
,
84
(
3
), pp.
266
280
.
You do not currently have access to this content.