Abstract

Due to their robustness, compactness, simplicity, and the possibility of nonlinear torque curves, spiral springs are being increasingly contemplated for industrial application. Recent manufacturing technologies and materials allow for the creation of spiral springs of various shapes and geometries able to provide the required torque curves. Modeling the behavior of this kind of springs is highly complex due to the strong nonlinearities arisen from large deflections and the possibility of coiling of strip length around the spring barrel or arbor. For this reason, up to our knowledge, existing models only provide design features such as deflection and torque curve for the simplest strip geometries, and fewer models supply, only if no strip coiling occurs, reactions at the strip-barrel and strip-arbor clampings. In addition, to our knowledge, just semi-empirical models for strip-barrel, -arbor and -strip contact forces or friction torques were available. In this work, we introduce a novel general, an analytical quasistatic model for the calculation of all the above spring characteristics for any length-dependent strip material and initial geometry and strip cross-sectional shape and for any barrel and arbor radii. The strip deflection curvatures are calculated minimizing the sum of elastic and gravitational potential energies under geometrical constraints associated with eventual strip coiling. Once the curvatures are calculated, the spring internal, contact, and reaction forces can be straightforwardly calculated by solving the elastica differential equations. Friction is taken into account by evaluating the contact conditions at the strip coiled sections.

References

References
1.
Cuttino
,
J. F.
,
Newman
,
D. D.
,
Gershenson
,
J. K.
, and
Schinstock
,
D. E.
,
2000
, “
A Structured Method for the Classification and Selection of Actuators for Space Deployment Mechanisms
,”
J. Eng. Des.
,
11
(
1
), pp.
31
53
. 10.1080/095448200261171
2.
Nakatake
,
T.
,
Konno
,
M.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2016
, “
Development of an Automatic Soil-Releasing Mechanism for a Peristaltic-Type Lunar Excavation Robot
,”
19th International Conference on Advances in Cooperative Robotics
,
London, UK
,
Sept. 12–14
.
3.
Song
,
S.-A.
,
Yoo
,
Y.
,
Koo
,
S.
,
Kim
,
S
, and
Suk
,
J.
,
2014
, “
System Design of Solar Sail Deployment and its Effect on Attitude Dynamics for Cube Satellite CNUSAIL-1
,”
APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technolog
,
Shangai, China
,
Sept. 24–26
.
4.
Knox
,
B.
, and
Schmiedeler
,
J.
,
2009
, “
A Unidirectional Series-Elastic Actuator Design Using a Spiral Torsion Spring
,”
ASME J. Appl. Mech.
,
131
. 10.1115/1.4000252
5.
Kim
,
Y.
,
Song
,
C.
, and
Park
,
J.
,
2012
, “
Development of Actuation System for Wearable Robots Using Spiral Spring
,”
12th International Conference on Control, Automation and Systems
,
Jeju Island, Korea
.
6.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications (Review Article)
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
. 10.1088/0957-0233/17/12/R01
7.
Munoz-Guijosa
,
J. M.
,
Fernandez-Zapico
,
G.
,
de la Peña
,
J.
, and
Echavarri
,
J.
,
2019
, “
Using FRPs in Elastic Regime for the Storage and Handling of Mechanical Energy and Power: Application in Spiral Springs
,”
Compos. Struct.
,
213
, pp.
317
327
. 10.1016/j.compstruct.2019.01.102
8.
Maffiodo
,
G.
,
Sessana
,
R.
,
Paolucci
,
D.
, and
Bertaggia
,
S.
,
2018
, “
Finite Life Fatigue Design of Spiral Springs of Dual-Mass Flywheels: Analytical Estimation and Experimental Results
,”
Adv. Mech. Eng.
,
10
(
6
), pp.
1
13
. 10.1177/1687814018778474
9.
Condon
,
A.
,
Davis
,
B.
,
Muller
,
P.
, and
Topper
,
B.
,
2011
, “
Simulation and Instrumentation Used to Develop a Super-Caliber Fin Set for a Precision Mortar
,”
26th International Symposium on Ballistics
,
Miami, FL
,
Sept. 12–16
.
10.
Jurkiewicz
,
A.
,
Nabagło
,
T.
,
Kowal
,
J.
, and
Apostoł
,
M.
,
2014
, “
A New Suspension System for an Autonomous Caterpillar Platform
,”
J. Theor. Appl. Mech.
,
52
(
4
), pp.
857
867
. 10.15632/jtam-pl.52.4.857
11.
Falkingham
,
R. T.
, and
Dams
,
J.
,
2004
, “
An Innovative Modern Design of Outdoor Medium Voltage Vacuum Switchgear
,”
IEEE CEPSI Conference
,
Shanghai, China
.
12.
Bergelin
,
B.
, and
Voglewede
,
P.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-bar Mechanism
,”
ASME J. Appl. Mech.
,
134
.
13.
Munoz-Guijosa
,
J. M.
,
Fernández Caballero
,
D.
,
Rodríguez de la Cruz
,
V.
,
Díaz Lantada
,
A.
,
Muñoz
,
J. L.
, and
Echávarri
,
J.
,
2013
, “
On the use of Variable Bending Stiffness Clothoidal Strips for the Analysis and Synthesis of low Variability Torque-Angle Turned Curves in Spiral Torsion Springs
,”
Mech. Mach. Theory
,
67
, pp.
32
46
. 10.1016/j.mechmachtheory.2013.04.004
14.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2019
, “
Optimization of the Energy Consumption Through Spring Balancing of Servo-Actuated Mechanisms
,”
ASME J. Appl. Mech.
15.
Wahl
,
A. M.
,
1944
,
Mechanical Springs
,
The Penton Publishing Group
.
16.
Swift
,
W. A. C.
,
1972
, “
An Analysis of the Spiral Spring
,”
PhD thesis
,
University of Sheffield
.
17.
Swift
,
W. A. C.
,
1974
, “
Influence of Spring-Back on the Characteristics of the Spiral Spring
,”
Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
615
625
. 10.1243/PIME_PROC_1974_188_073_02
18.
McDonald
,
F. A.
,
1980
, “
Deceptively Simple Harmonic Motion: A Mass on a Spiral Spring
,”
Am. J. Phys.
,
48
(
3
), pp.
189
192
. 10.1119/1.12170
19.
Phillips
,
E.
,
1860
, “
Mémoire sur le Spiral Réglant des Chronomètres et des Montres
,”
J. Math. Pures Appl. (Paris), Ser. 2
,
5
, pp.
313
366
.
20.
Xie
,
L.
,
Ko
,
P.
, and
Du
,
R.
,
2014
, “
The Mechanics of Spiral Springs and its Application in Timekeeping
,”
ASME J. Appl. Mech.
,
81
(
3
). 10.1115/1.4024669
21.
Xie
,
L.
, and
Du
,
R.
,
2012
, “
Mechanics of Hairspring in Mechanical Watch Movement
,”
Appl. Mech. Mater.
,
117–119
, pp.
252
255
. 10.4028/www.scientific.net/amm.117-119.252
22.
Munoz-Guijosa
,
J. M.
,
Fernández Caballero
,
D.
,
Rodríguez de la Cruz
,
V.
,
Muñoz Sanz
,
J. L.
, and
Echávarri
,
J.
,
2012
, “
Generalized Spiral Torsion Spring Model
,”
Mech. Mach. Theory
,
51
, pp.
110
130
. 10.1016/j.mechmachtheory.2011.12.007
23.
Gross
,
S.
,
1960
,
Berechnung und Gestaltung von Metallfedern
,
Springer
,
Berlin
.
24.
Matsumoto
,
T.
,
Iida
,
K.
, and
Shimoseki
,
M.
,
2016
, “
The Simplified Design Method of Contact-Type Spiral Springs
,”
Trans. Jpn Soc. Spring Eng.
,
61
, pp.
19
24
. 10.5346/trbane.2016.19
25.
Queener
,
C. A.
, and
Wood
,
G. E.
,
1971
, “
Spiral Power Springs. Part 1—Theory
,”
J. Eng. Ind.
,
93
(
2
), pp.
667
675
. 10.1115/1.3427979
26.
Queener
,
C. A.
, and
Wood
,
G. E.
,
1971
, “
Spiral Power Springs. Part 2—Design
,”
J. Eng. Ind.
,
93
(
2
), pp.
676
682
. 10.1115/1.3427980
27.
Radaelli
,
G.
,
Juan
,
A.
, and
Herder
,
J.
,
2011
, “
An Energy Approach to Static Balancing of Systems With Torsion Stiffness
,”
ASME J. Appl. Mech.
,
133
.
You do not currently have access to this content.