Abstract

In a minimally invasive surgical (MIS) robot, the remote center of motion (RCM) mechanism is usually used to realize the constrained motion of the surgical instrument. In this paper, a novel design method for planar 2DOF RCM mechanisms is proposed based on closed-loop cable transmissions. The concept is to utilize several coupled cable transmissions to constrain a serial kinematic chain. Through the analysis and determination of the transmission ratios for these cable transmissions, a class of planar 2DOF RCM mechanisms without any active or passive translational joints is obtained, which provides large workspace and low collision risk for the MIS robots. One of the resulting mechanisms is designed in detail and kinematically analyzed. To evaluate the influence of the elastic cables, a new error model for the proposed RCM mechanism is established through the static analysis and cable deformation analysis. Utilizing this model, the cable-induced error distributions of the tip and the RCM point are obtained, which show that these errors are within a relatively small range. Furthermore, the prototype of the proposed mechanism is built, and the accuracy experiments are conducted.

References

References
1.
Taylor
,
R.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
. 10.1109/TRA.2003.817058
2.
Kim
,
K. Y.
,
Song
,
H. S.
,
Suh
,
J. W.
, and
Lee
,
J. J.
,
2013
, “
A Novel Surgical Manipulator With Workspace-Conversion Ability for Telesurgery
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
200
211
. 10.1109/TMECH.2011.2164929
3.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
,
2000
, “
The Intuitive Telesurgery System: Overview and Application
,”
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, pp.
618
621
.
4.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
. 10.1115/1.4024848
5.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
. 10.1002/rcs.453
6.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices
,
9
(
1
), p.
011003
. 10.1115/1.4028651
7.
Taylor
,
R.
,
Funda
,
J.
,
Grossman
,
D.
,
Karidis
,
J.
, and
LaRose
,
D.
,
1995
, “
Remote Center-of-Motion Robot for Surgery
”. US Patent No. 5397323.
8.
Taylor
,
R.
,
Jensen
,
P.
,
Whitcomb
,
L.
,
Barnes
,
A.
,
Kumar
,
R.
, and
Dan
,
S.
,
1999
, “
A Steady-Hand Robotic System for Microsurgical Augmentation
,”
Int. J. Rob. Res.
,
18
(
12
), pp.
1201
1210
. 10.1177/02783649922067807
9.
Taylor
,
R. H.
,
Funda
,
J.
,
Eldridge
,
B.
,
Gomory
,
S.
,
Gruben
,
K.
,
LaRose
,
D.
, and
Anderson
,
J.
,
1995
, “
A Telerobotic Assistant for Laparoscopic Surgery
,”
IEEE Eng. Med. Biol. Mag.
,
14
(
3
), pp.
279
288
. 10.1109/51.391776
10.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
. 10.1016/j.mechmachtheory.2007.12.008
11.
He
,
Y.
,
Zhang
,
P.
,
Jin
,
H.
,
Hu
,
Y.
, and
Zhang
,
J.
,
2016
, “
Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom
,”
ASME J. Mech. Des.
,
138
(
12
), p.
122301
. 10.1115/1.4034301
12.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
. 10.1115/1.4035991
13.
Huang
,
L.
,
Yang
,
Y.
,
Xiao
,
J.
, and
Su
,
P.
,
2016
, “
Type Synthesis of 1R1T Remote Center of Motion Mechanisms Based on Pantograph Mechanisms
,”
ASME J. Mech. Des.
,
138
(
1
), p.
014501
. 10.1115/1.4031804
14.
Chen
,
G.
,
Wang
,
J.
, and
Wang
,
H.
,
2018
, “
A New Type of Planar 2-DOF Remote Center-of-Motion Mechanisms Inspired by the Peaucellier-Lipkin Straight-Line Linkage
,”
ASME J. Mech. Des.
,
141
(
1
), p.
015001
. 10.1115/1.4041221
15.
Ye
,
W.
,
Zhang
,
B.
, and
Li
,
Q.
,
2020
, “
Design of a 1R1T Planar Mechanism With Remote Center of Motion
,”
Mech. Mach. Theory
,
149
, p.
103845
. 10.1016/j.mechmachtheory.2020.103845
16.
Yin
,
L.
,
Huang
,
L.
,
Huang
,
J.
,
Tian
,
L.
, and
Li
,
F.
,
2019
, “
Solution-Region-Based Synthesis Approach for Selecting Optimal Four-Bar Linkages With the Ball–Burmester Point
,”
Mech. Sci.
,
10
(
1
), pp.
25
33
. 10.5194/ms-10-25-2019
17.
Yin
,
L.
,
Huang
,
L.
,
Huang
,
J.
,
Xu
,
P.
,
Peng
,
X.
, and
Zhang
,
P.
,
2019
, “
Synthesis Theory and Optimum Design of Four-bar Linkage With Given Angle Parameters
,”
Mech. Sci.
,
10
(
2
), pp.
545
552
. 10.5194/ms-10-545-2019
18.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Chain Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
. 10.1016/j.mechmachtheory.2006.01.004
19.
Li
,
Q.
,
Herve
,
J.
, and
Huang
,
P.
,
2017
, “
Type Synthesis of a Special Family of Remote Center-of-Motion Parallel Manipulators With Fixed Linear Actuators for Minimally Invasive Surgery
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031012
. 10.1115/1.4035989
20.
Zhang
,
N.
,
Huang
,
P.
, and
Li
,
Q.
,
2018
, “
Modeling, Design and Experiment of a Remote-Center-of-Motion Parallel Manipulator for Needle Insertion
,”
Rob. Comput.-Integr. Manuf.
,
50
, pp.
193
202
. 10.1016/j.rcim.2017.09.014
21.
Beira
,
R.
,
Santos-Carreras
,
L.
,
Rognini
,
G.
,
Bleuler
,
H.
, and
Clavel
,
R.
,
2011
, “
Dionis: A Novel Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
191
208
. 10.1155/2011/973097
22.
Kuo
,
C.
, and
Dai
,
J.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
. 10.1115/1.4006541
23.
Chen
,
G.
,
Wang
,
J.
,
Wang
,
H.
,
Chen
,
C.
,
Parenti-Castelli
,
V.
, and
Angeles
,
J.
,
2020
, “
Design and Validation of a Spatial two-Limb 3R1T Parallel Manipulator with Remote Center-of-Motion
,”
Mech. Mach. Theory
,
149
, p.
103807
. 10.1016/j.mechmachtheory.2020.103807
24.
Devengenzo
,
L.
,
Solomon
,
R.
, and
Cooper
,
G.
,
2015
, “
Cable Tensioning in a Robotic Surgical System
,” US Patent No. 90501199.
25.
Devengenzo
,
L.
,
Solomon
,
R.
, and
Cooper
,
G.
,
2016
, “
Cable Tensioning in a Robotic Surgical System
,” US Patent No. 94862888.
26.
Gerber
,
J.
,
Pettenkofer
,
M.
, and
Hubschman
,
P.
,
2020
, “
Advanced Robotic Surgical Systems in Ophthalmology
,”
Eye
,
34
(
3
), pp.
1
9
. 10.1038/s41433-020-0837-9
27.
Liu
,
S.
,
Chen
,
B.
,
Caro
,
S.
,
Briot
,
S.
,
Harewood
,
L.
, and
Chen
,
C.
,
2016
, “
A Cable Linkage With Remote Center of Motion
,”
Mech. Mach. Theory
,
105
, pp.
583
605
. 10.1016/j.mechmachtheory.2016.07.023
28.
Tsai
,
L.
, and
Lee
,
J.
,
1989
, “
“Kinematic Analysis of Tendon-Driven Robotic Mechanisms Using Graph Theory
,”
ASME J. Mech. Transm. Autom. Des.
,
111
(
1
), pp.
59
65
. 10.1115/1.3258972
29.
Norton
,
L.
,
2004
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill Higher Education
,
Boston, MA
.
30.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
IEEE Trans. Bio-med. Eng.
,
53
(
7
), pp.
1440
1445
. 10.1109/TBME.2006.875716
31.
Ferguson
,
J. M.
,
Cai
,
L. Y.
,
Reed
,
A.
,
Siebold
,
M.
,
De
,
S.
,
Herrell
,
S. D.
, and
Webster
,
R. J.
,
2018
, “
Toward Image-Guided Partial Nephrectomy With the da Vinci Robot: Exploring Surface Acquisition Methods for Intraoperative Re-registration
,”
Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling
,
Houston, TX
,
Mar. 12–14
, p.
1057609
.
32.
Peirs
,
J.
,
Clijnen
,
J.
,
Reynaerts
,
D.
,
Van Brussel
,
H.
,
Herijgers
,
P.
,
Corteville
,
B.
, and
Boone
,
S.
,
2004
, “
A Micro Optical Force Sensor for Force Feedback During Minimally Invasive Robotic Surgery
,”
Sens. Actuators, A
,
115
(
2–3
), pp.
447
455
. 10.1016/j.sna.2004.04.057
33.
Hong
,
M. B.
, and
Jo
,
Y. H.
,
2012
, “
Design and Evaluation of 2-DOF Compliant Forceps With Force-Sensing Capability for Minimally Invasive Robot Surgery
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
932
941
. 10.1109/TRO.2012.2194889
You do not currently have access to this content.