Abstract

Lamina emergent torsion (LET) joints for use in origami-based applications enables folding of panels. Placing LET joints in series and parallel (formulating LET arrays) opens the design space to provide for tunable stiffness characteristics in other directions while maintaining the ability to fold. Analytical equations characterizing the elastic load–displacement for general serial–parallel formulations of LET arrays for three degrees-of-freedom are presented: rotation about the desired axis, in-plane rotation, and extension/compression. These equations enable the design of LET arrays for a variety of applications, including origami-based mechanisms. These general equations are verified using finite element analysis, and to show variability of the LET array design space, several verification plots over a range of parameters are provided.

References

References
1.
Jacobsen
,
J.
,
Winder
,
B.
,
Howell
,
L.
, and
Magleby
,
S.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), pp.
1
9
. 10.1115/1.4000523
2.
Qiu
,
C.
,
Qi
,
P.
,
Liu
,
H.
,
Althoefer
,
K.
, and
Dai
,
J. S.
,
2016
, “
Six-Dimensional Compliance Analysis and Validation of Orthoplanar Springs
,”
ASME J. Mech. Des.
,
138
(
4
), p.
042301
. 10.1115/1.4032580
3.
Qiu
,
L.
,
Huang
,
G.
, and
Yin
,
S.
,
2017
, “
Design and Performance Analysis of Double C-Type Flexure Hinges
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
044503
. 10.1115/1.4036609
4.
Qiu
,
L.
,
Yin
,
S.
, and
Xie
,
Z.
,
2016
, “
Failure Analysis and Performance Comparison of Triple-LET and LET Flexure Hinges
,”
Eng. Failure Anal.
,
66
, pp.
35
43
. 10.1016/j.engfailanal.2016.04.006
5.
Wang
,
R.
, and
Zhang
,
X.
,
2017
, “
Optimal Design of a Planar Parallel 3-DOF Nanopositioner With Multi-Objective
,”
Mech. Mach. Theory
,
112
, pp.
61
83
. 10.1016/j.mechmachtheory.2017.02.005
6.
Gollnick
,
P. S.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
An Introduction to Multilayer Lamina Emergent Mechanisms
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081006
. 10.1115/1.4004542
7.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism
,”
ASME J. Mech. Des.
,
140
(
12
), p.
125001
. 10.1115/1.4037621
8.
Lobontiu
,
N.
,
Gress
,
T.
,
Munteanu
,
M. G.
, and
Ilic
,
B.
,
2019
, “
Stiffness Design of Circular-Axis Hinge, Self-Similar Mechanism With Large Out-of-Plane Motion
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092302
. 10.1115/1.4042792
9.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
10.
Aten
,
Q. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2012
, “
Geometrically Non-Linear Analysis of Thin-Film Compliant Mems Via Shell and Solid Elements
,”
Finite Elements Anal. Des.
,
49
(
1
), pp.
70
77
. 10.1016/j.finel.2011.08.022
11.
Francis
,
K. C.
,
Blanch
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,”
Mech. Sci.
,
4
(
2
), pp.
371
380
. 10.5194/ms-4-371-2013
12.
Pehrson
,
N. A.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2016
, “
Introduction of Monolithic Origami With Thick-Sheet Materials
,”
Proceedings of the International Association for Shell and Spatial Structures Annual Symposium
,
Tokyo, Japan
,
Sept. 26–30
, pp.
1
10
.
13.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
. 10.1016/j.mechmachtheory.2009.05.015
14.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory
,
114
, pp.
111
124
. 10.1016/j.mechmachtheory.2017.03.011
15.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory
,
120
, pp.
166
177
. 10.1016/j.mechmachtheory.2017.09.023
16.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2015
, “
New Deployable Structures Based on An Elastic Origami Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021402
. 10.1115/1.4029228
17.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
. 10.1115/1.4042791
18.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
. 10.1115/1.4041782
19.
Pradier
,
C.
,
Cavoret
,
J.
,
Dureisseix
,
D.
,
Jean-Mistral
,
C.
, and
Ville
,
F.
,
2016
, “
An Experimental Study and Model Determination of the Mechanical Stiffness of Paper Folds
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041401
. 10.1115/1.4032629
20.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R. J.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
111009
), p.
111009
. 10.1115/1.4025506
21.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
. 10.1115/1.4041945
22.
Bös
,
F.
,
Wardetzky
,
M.
,
Vouga
,
E.
, and
Gottesman
,
O.
,
2016
, “
On the Incompressibility of Cylindrical Origami Patterns
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021404
.
23.
Pehrson
,
N. A.
,
Smith
,
S. P.
,
Ames
,
D. C.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2019
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
,
Paper No. AIAA 2019–0484
.
24.
Huang
,
H.
,
Li
,
B.
,
Zhang
,
T.
,
Zhang
,
Z.
,
Qi
,
X.
, and
Hu
,
Y.
,
2019
, “
Design of Large Single-Mobility Surface-Deployable Mechanism Using Irregularly Shaped Triangular Prismoid Modules
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012301
. 10.1115/1.4041178
25.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
26.
Defigueiredo
,
B. P.
,
Zimmerman
,
T. K.
,
Russell
,
B. D.
, and
Howell
,
L. L.
,
2018
, “
Regional Stiffness Reduction Using Lamina Emergent Torsional Joints for Flexible Printed Circuit Board Design
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041001
. 10.1115/1.4040552
27.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
. 10.1115/1.4030876
28.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
. 10.1115/1.4040178
29.
Klett
,
Y.
,
2018
, “
PALEO: Plastically Annealed Lamina Emergent Origami
,”
ASME IDETC/CIE International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p. V05BT07A062.
30.
Nelson
,
T. G.
,
Bruton
,
J. T.
,
Rieske
,
N. E.
,
Walton
,
M. P.
,
Fullwood
,
D. T.
, and
Howell
,
L. L.
,
2016
, “
Material Selection Shape Factors for Compliant Arrays in Bending
,”
Mater. Des.
,
110
, pp.
865
877
. 10.1016/j.matdes.2016.08.056
31.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
. 10.1115/1.4031901
32.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
. 10.1115/1.4030875
33.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2016
, “
Kinematics of Origami Structures With Smooth Folds
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061019
. 10.1115/1.4034299
34.
Bilancia
,
P.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2019
, “
A CAD/CAE Integration Framework for Analyzing and Designing Spatial Compliant Mechanisms Via Pseudo-Rigid-Body Methods
,”
Rob. Comput. Integrated Manuf.
,
56
, pp.
287
302
. 10.1016/j.rcim.2018.07.015
35.
Boehm
,
K. J.
,
Gibson
,
C. R.
,
Hollaway
,
J. R.
, and
Espinosa-Loza
,
F.
,
2016
, “
A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom
,”
Fusion Sci. Technol.
,
70
(
2
), pp.
265
273
. 10.13182/FST15-217
36.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
. 10.1115/1.4039852
37.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precision Eng.
,
33
(
3
), pp.
268
274
. 10.1016/j.precisioneng.2008.08.001
38.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
. 10.1115/1.4001726
39.
Chen
,
G.
, and
Howell
,
L. L.
,
2018
, “
Symmetric Equations for Evaluating Maximum Torsion Stress of Rectangular Beams in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
31
(
14
), pp.
1
1
. 10.3901/JME.2018.01.001
You do not currently have access to this content.