Abstract

Clean technologies aim to address climatic, environmental, and health concerns associated with their conventional counterparts. However, such technologies achieve these goals only if they are adopted by users and effectively replace conventional practices. Despite the important role that users play to accomplish these goals by making decisions whether to adopt such clean alternatives or not, currently, there is no systematic framework for quantitative integration of the behavioral motivations of users during the design process for these technologies. In this study, the theory of planned behavior (TPB) is integrated with usage-context-based design to provide a holistic approach for predicting the market share of clean versus conventional product alternatives based on users’ personal beliefs, social norms, and perception of behavioral control. Based on the mathematical linkage of the model components, technology design attributes can then be adjusted, resulting in the design of products that are more in line with users’ behavioral intentions, which can lead to higher adoption rates. The developed framework is applied in a case study of adoption of improved cookstoves in a community in Northern Uganda. Results indicate that incorporating TPB attributes into utility functions improves the prediction power of the model and that the attributes that users in the subject community prioritize in a clean cookstove are elicited through the TPB. Households’ decision-making behavior before and after a trial period suggests that design and marketing strategy should systematically integrate user’s behavioral tendencies prior to interventions to improve the outcomes of clean technology implementation projects.

References

References
1.
Lewis
,
J. J.
, and
Pattanayak
,
S. K.
,
2012
, “
Who Adopts Improved Fuels and Cookstoves? A Systematic Review
,”
Environ. Health Perspect.
,
120
(
5
), pp.
637
645
. 10.1289/ehp.1104194
2.
Dietz
,
T.
,
Gardner
,
G. T.
,
Gilligan
,
J.
,
Stern
,
P. C.
, and
Vandenbergh
,
M. P.
,
2009
, “
Household Actions Can Provide a Behavioral Wedge to Rapidly Reduce US Carbon Emissions
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
44
), pp.
18452
18456
. 10.1073/pnas.0908738106
3.
Bond
,
T. C.
,
Doherty
,
S. J.
,
Fahey
,
D. W.
,
Forster
,
P. M.
,
Berntsen
,
T.
,
DeAngelo
,
B. J.
,
Flanner
,
M. G.
,
Ghan
,
S.
,
Kärcher
,
B.
,
Koch
,
D.
,
Kinne
,
S.
,
Kondo
,
Y.
,
Quinn
,
P. K.
,
Sarofim
,
M. C.
,
Schultz
,
M. G.
,
Schulz
,
M.
,
Venkataraman
,
C.
,
Zhang
,
H.
,
Zhang
,
S.
,
Bellouin
,
N.
,
Guttikunda
,
S. K.
,
Hopke
,
P. K.
,
Jacobson
,
M. Z.
,
Kaiser
,
J. W.
,
Klimont
,
Z.
,
Lohmann
,
U.
,
Schwarz
,
J. P.
,
Shindell
,
D.
,
Storelvmo
,
T.
,
Warren
,
S. G.
, and
Zender
,
C. S.
,
2013
, “
Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment
,”
J. Geophys. Res. Atmos.
,
118
(
11
), pp.
5380
5552
. 10.1002/jgrd.50171
4.
International Energy Agency
,
2015
, “
World Energy Outlook 2015—Biomass Database
”.
5.
Johnson
,
N. G.
, and
Bryden
,
K. M.
,
2012
, “
Factors Affecting Fuelwood Consumption in Household Cookstoves in an Isolated Rural West African Village
,”
Energy
,
46
(
1
), pp.
310
321
. 10.1016/j.energy.2012.08.019
6.
Lim
,
S. S.
,
Vos
,
T.
,
Flaxman
,
A. D.
,
Danaei
,
G.
,
Shibuya
,
K.
,
Adair-Rohani
,
H.
,
Amann
,
M.
,
Anderson
,
H. R.
,
Andrews
,
K. G.
,
Aryee
,
M.
,
Atkinson
,
C.
,
Bacchus
,
L. J.
,
Bahalim
,
A. N.
,
Balakrishnan
,
K.
,
Balmes
,
J.
,
Barker-Collo
,
S.
,
Baxter
,
A.
,
Bell
,
M. L.
,
Blore
,
J. D.
,
Blyth
,
F.
,
Bonner
,
C.
,
Borges
,
G.
,
Bourne
,
R.
,
Boussinesq
,
M.
,
Brauer
,
M.
,
Brooks
,
P.
,
Bruce
,
N. G.
,
Brunekreef
,
B.
,
Bryan-Hancock
,
C.
,
Bucello
,
C.
,
Buchbinder
,
R.
,
Bull
,
F.
,
Burnett
,
R. T.
,
Byers
,
T. E.
,
Calabria
,
B.
,
Carapetis
,
J.
,
Carnahan
,
E.
,
Chafe
,
Z.
,
Charlson
,
F.
,
Chen
,
H.
,
Chen
,
J. S.
,
Cheng
,
A. T.
,
Child
,
J. C.
,
Cohen
,
A.
,
Colson
,
K. E.
,
Cowie
,
B. C.
,
Darby
,
S.
,
Darling
,
S.
,
Davis
,
A.
,
Degenhardt
,
L.
,
Dentener
,
F.
,
Des Jarlais
,
D. C.
,
Devries
,
K.
,
Dherani
,
M.
,
Ding
,
E. L.
,
Dorsey
,
E. R.
,
Driscoll
,
T.
,
Edmond
,
K.
,
Ali
,
S. E.
,
Engell
,
R. E.
,
Erwin
,
P. J.
,
Fahimi
,
S.
,
Falder
,
G.
,
Farzadfar
,
F.
,
Ferrari
,
A.
,
Finucane
,
M. M.
,
Flaxman
,
S.
,
Fowkes
,
F. G.
,
Freedman
,
G.
,
Freeman
,
M. K.
,
Gakidou
,
E.
,
Ghosh
,
S.
,
Giovannucci
,
E
,
Gmel
,
G
,
Graham
,
K
,
Grainger
,
R
,
Grant
,
B
,
Gunnell
,
D.
,
Gutierrez
,
H. R.
,
Hall
,
W.
,
Hoek
,
H. W
,
Hogan
,
A.
,
Hosgood
,
H. D.
3rd
,
Hoy
,
D
,
Hu
,
H
,
Hubbell
,
B. J
,
Hutchings
,
S. J
,
Ibeanusi
,
S. E
,
Jacklyn
,
G. L
,
Jasrasaria
,
R
,
Jonas
,
J. B
,
Kan
,
H.
,
Kanis
,
J. A
,
Kassebaum
,
N
,
Kawakami
,
N.
,
Khang
,
Y. H
,
Khatibzadeh
,
S
,
Khoo
,
J. P
,
Kok
,
C
,
Laden
,
F
,
Lalloo
,
R
,
Lan
,
Q
,
Lathlean
,
T
,
Leasher
,
J. L
,
Leigh
,
J.
,
Li
,
Y
,
Lin
,
J. K
,
Lipshultz
,
S. E
,
London
,
S
,
Lozano
,
R.
,
Lu
,
Y
,
Mak
,
J
,
Malekzadeh
,
R
,
Mallinger
,
L.
,
Marcenes
,
W
,
March
,
L
,
Marks
,
R
,
Martin
,
R
,
McGale
,
P
,
McGrath
,
J
,
Mehta
,
S
,
Mensah
,
G. A
,
Merriman
,
T. R
,
Micha
,
R
,
Michaud
,
C.
,
Mishra
,
V.
,
Mohd Hanafiah
,
K
,
Mokdad
,
A. A
,
Morawska
,
L
,
Mozaffarian
,
D
,
Murphy
,
T
,
Naghavi
,
M
,
Neal
,
B
,
Nelson
,
P. K
,
Nolla
,
J. M
,
Norman
,
R
,
Olives
,
C
,
Omer
,
S. B
,
Orchard
,
J
,
Osborne
,
R
,
Ostro
,
B
,
Page
,
A
,
Pandey
,
K. D
,
Parry
,
C. D
,
Passmore
,
E
,
Patra
,
J
,
Pearce
,
N
,
Pelizzari
,
P. M
,
Petzold
,
M
,
Phillips
,
M. R
,
Pope
,
D
,
Pope
,
C. A.
3rd
,
Powles
,
J
,
Rao
,
M
,
Razavi
,
H
,
Rehfuess
,
E. A.
,
Rehm
,
J. T
,
Ritz
,
B
,
Rivara
,
F. P
,
Roberts
,
T
,
Robinson
,
C.
,
Rodriguez-Portales
,
J. A
,
Romieu
,
I
,
Room
,
R
,
Rosenfeld
,
L. C
,
Roy
,
A
,
Rushton
,
L
,
Salomon
,
J. A.
,
Sampson
,
U.
,
Sanchez-Riera
,
L
,
Sanman
,
E
,
Sapkota
,
A
,
Seedat
,
S
,
Shi
,
P
,
Shield
,
K
,
Shivakoti
,
R
,
Singh
,
G. M
,
Sleet
,
D. A
,
Smith
,
E
,
Smith
,
K. R
,
Stapelberg
,
N. J
,
Steenland
,
K.
,
Stöckl
,
H
,
Stovner
,
L. J
,
Straif
,
K
,
Straney
,
L
,
Thurston
,
G. D
,
Tran
,
J. H.
,
Van Dingenen
,
R.
,
van Donkelaar
,
A
,
Veerman
,
J. L
,
Vijayakumar
,
L
,
Weintraub
,
R
,
Weissman
,
M. M
,
White
,
R. A
,
Whiteford
,
H
,
Wiersma
,
S. T
,
Wilkinson
,
J. D
,
Williams
,
H. C.
,
Williams
,
W
,
Wilson
,
N
,
Woolf
,
A. D
,
Yip
,
P
,
Zielinski
,
J. M
,
Lopez
,
A. D
,
Murray
,
C. J
,
Ezzati
,
M.
,
AlMazroa
,
M. A.
, and
Memish
,
Z. A.
,
2013
, “
A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010
,”
Lancet
,
380
(
9859
), pp.
2224
2260
. 10.1016/S0140-6736(12)61766-8
7.
Johnson
,
M.
,
Edwards
,
R.
, and
Masera
,
O.
,
2010
, “
Improved Stove Programs Need Robust Methods to Estimate Carbon Offsets
,”
Clim. Change
,
102
(
3–4
), pp.
641
649
. 10.1007/s10584-010-9802-0
8.
Ruiz-Mercado
,
I.
,
Canuz
,
E.
, and
Smith
,
K. R.
,
2012
, “
Temperature Dataloggers as Stove Use Monitors (SUMs): Field Methods and Signal Analysis
,”
Biomass Bioenergy
,
47
, pp.
459
468
. 10.1016/j.biombioe.2012.09.003
9.
Jan
,
I.
,
Ullah
,
S.
,
Akram
,
W.
,
Khan
,
N. P.
,
Asim
,
S. M.
,
Mahmood
,
Z.
,
Ahmad
,
M. N.
, and
Ahmad
,
S. S.
,
2017
, “
Adoption of Improved Cookstoves in Pakistan: A Logit Analysis
,”
Biomass Bioenergy
,
103
, pp.
55
62
. 10.1016/j.biombioe.2017.05.014
10.
Alam
,
S. S.
,
Nik Hashim
,
N. H.
,
Rashid
,
M.
,
Omar
,
N. A.
,
Ahsan
,
N.
, and
Ismail
,
M. D.
,
2014
, “
Small-Scale Households Renewable Energy Usage Intention: Theoretical Development and Empirical Settings
,”
Renewable Energy
,
68
, pp.
255
263
. 10.1016/j.renene.2014.02.010
11.
Hanna
,
R.
,
Duflo
,
E.
, and
Greenstone
,
M.
,
2016
, “
Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves
,”
Am. Econ. J. Econ. Policy
,
8
(
1
), pp.
80
114
. 10.1257/pol.20140008
12.
Jagtap
,
S.
,
2019
, “
Design and Poverty: A Review of Contexts, Roles of Poor People, and Methods
,”
Res. Eng. Des.
,
30
(
1
), pp.
41
62
.
13.
Smith
,
K. R.
,
Dutta
,
K.
,
Chengappa
,
C.
,
Gusain
,
P. P. S.
,
Berrueta
,
O. M.
,
Edwards
,
V.
,
Bailis
,
R.
,
Shields
,
R.
, and
N
,
K.
,
2007
, “
Monitoring and Evaluation of Improved Biomass Cookstove Programs for Indoor Air Quality and Stove Performance: Conclusions From the Household Energy and Health Project
,”
Energy Sustain. Dev.
,
11
(
2
), pp.
5
18
. 10.1016/S0973-0826(08)60396-8
14.
Still
,
D.
,
Bentson
,
S.
, and
Li
,
H.
,
2015
, “
Results of Laboratory Testing of 15 Cookstove Designs in Accordance with the ISO/IWA Tiers of Performance
,”
Ecohealth
,
12
(
1
), pp.
12
24
. 10.1007/s10393-014-0955-6
15.
Yuntenwi
,
E. A. T.
,
MacCarty
,
N.
,
Still
,
D.
, and
Ertel
,
J.
,
2008
, “
Laboratory Study of the Effects of Moisture Content on Heat Transfer and Combustion Efficiency of Three Biomass Cook Stoves
,”
Energy Sustain. Dev.
,
12
(
2
), pp.
66
77
. 10.1016/S0973-0826(08)60430-5
16.
MacCarty
,
N.
,
Still
,
D.
, and
Ogle
,
D.
,
2010
, “
Fuel Use and Emissions Performance of Fifty Cooking Stoves in the Laboratory and Related Benchmarks of Performance
,”
Energy Sustain. Dev.
,
14
(
3
), pp.
161
171
. 10.1016/j.esd.2010.06.002
17.
Lombardi
,
F.
,
Riva
,
F.
,
Bonamini
,
G.
,
Barbieri
,
J.
, and
Colombo
,
E.
,
2017
, “
Laboratory Protocols for Testing of Improved Cooking Stoves (ICSs): A Review of State-of-the-Art and Further Developments
,”
Biomass Bioenergy
,
98
, pp.
321
335
. 10.1016/j.biombioe.2017.02.005
18.
Jetter
,
J.
,
Zhao
,
Y.
,
Smith
,
K. R.
,
Khan
,
B.
,
Yelverton
,
T.
,
Decarlo
,
P.
, and
Hays
,
M. D.
,
2012
, “
Pollutant Emissions and Energy Efficiency Under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards
,”
Environ. Sci. Technol.
,
46
(
19
), pp.
10827
10834
. 10.1021/es301693f
19.
Bailis
,
R.
,
Thompson
,
R.
,
Lam
,
N.
,
Berrueta
,
V.
,
Muhwezi
,
G.
, and
Adams
,
E.
,
2018
,
Kitchen Performance Test (KPT), Originally prepared in 2003 for the Household Energy and Health Programme, Shell Foundation, Revised in 2018
.
20.
Moses
,
N. D.
, and
MacCarty
,
N. A.
,
2018
, “
A Practical Evaluation For Cookstove Usability
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME, Quebec
,
Aug. 26–29
.
21.
Rose Eilenberg
,
S.
,
Bilsback
,
K. R.
,
Johnson
,
M.
,
Kodros
,
J. K.
,
Lipsky
,
E. M.
,
Naluwagga
,
A.
,
Fedak
,
K. M.
,
Benka-Coker
,
M.
,
Reynolds
,
B.
,
Peel
,
J.
,
Clark
,
M.
,
Shan
,
M.
,
Sambandam
,
S.
,
L'Orange
,
C.
,
Pierce
,
J. R.
,
Subramanian
,
R.
,
Volckens
,
J.
, and
Robinson
,
A. L.
,
2018
, “
Field Measurements of Solid-Fuel Cookstove Emissions From Uncontrolled Cooking in China, Honduras, Uganda, and India
,”
Atmos. Environ.
,
190
, pp.
116
125
. 10.1016/j.atmosenv.2018.06.041
22.
Ventrella
,
J.
, and
MacCarty
,
N. A.
,
2018
, “
Development and Pilot Study of an Integrated Sensor System to Measure Fuel Consumption and Cookstove Use in Rural Households
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
,
Aug. 26–29
.
23.
ISO
.,
2018
,
ISO 19867-1:2018—Clean Cookstoves and Clean Cooking Solutions—Harmonized Laboratory Test Protocols—Part 1: Standard Test Sequence for Emissions and Performance, Safety and Durability
.
24.
Parker
,
R. R.
,
Galvan
,
E.
, and
Malak
,
R. J.
,
2014
, “
Technology Characterization Models and Their Use in Systems Design
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071003
. 10.1115/1.4025960
25.
Arendt
,
J. L.
,
McAdams
,
D. A.
, and
Malak
,
R. J.
,
2012
, “
Uncertain Technology Evolution and Decision Making in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100904
. 10.1115/1.4007396
26.
Adamowicz
,
W.
,
Bunch
,
D.
,
Cameron
,
T. A.
,
Dellaert
,
B. G. C.
,
Hanneman
,
M.
,
Keane
,
M.
,
Louviere
,
J.
,
Meyer
,
R.
,
Steenburgh
,
T.
, and
Swait
,
J.
,
2008
, “
Behavioral Frontiers in Choice Modeling
,”
Mark. Lett.
,
19
(
3–4
), pp.
215
228
. 10.1007/s11002-008-9038-1
27.
Thurstone
,
L. L.
,
1927
, “
A Law of Comparative Judgment
,”
Psychol. Rev.
,
34
(
4
), pp.
273
286
. 10.1037/h0070288
28.
McFadden
,
D.
,
1981
, “Econometric Models of Probabilistic Choice,”
Structural Analysis of Discrete Data
,
C.
Manski
and
D.
McFadden
, eds.,
MIT Press
,
Cambridge, MA
, pp.
198
272
.
29.
Payne
,
J. W.
,
Bettman
,
J. R.
, and
Johnson
,
E. J.
,
1993
,
The Adaptive Decision Maker
,
Cambridge University Press
,
Cambridge
.
30.
Kamakura
,
W.
,
Mela
,
C. F.
,
Ansari
,
A.
,
Bodapati
,
A.
,
Fader
,
P.
,
Iyengar
,
R.
,
Naik
,
P.
,
Neslin
,
S.
,
Sun
,
B.
,
Verhoef
,
P. C.
,
Wedel
,
M.
, and
Wilcox
,
R.
,
2005
, “
Choice Models and Customer Relationship Management
,”
Mark. Lett.
,
16
(
3–4
), pp.
279
291
. 10.1007/s11002-005-5892-2
31.
Krishnamurty
,
S.
,
2006
, “Normative Decision Analysis in Engineering Design,”
Decision Making in Engineering Design
,
ASME
,
New York
, pp.
21
33
.
32.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
,
Decision-Based Design Integrating Consumer Preferences Into Engineering Design
,
Springer
,
New York
.
33.
Resende
,
C. B.
,
Grace Heckmann
,
C.
, and
Michalek
,
J. J.
,
2012
, “
Robust Design for Profit Maximization With Aversion to Downside Risk From Parametric Uncertainty in Consumer Choice Models
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100901
. 10.1115/1.4007533
34.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2009
, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
. 10.1080/00207540701393171
35.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
. 10.1115/1.4002972
36.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D Transp. Environ.
,
32
, pp.
421
434
. 10.1016/j.trd.2014.08.007
37.
Ross Morrow
,
W.
,
Long
,
M.
, and
MacDonald
,
E. F.
,
2014
, “
Market-System Design Optimization With Consider-Then-Choose Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031003
. 10.1115/1.4026094
38.
Burnap
,
A.
,
Pan
,
Y.
,
Liu
,
Y.
,
Ren
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Improving Design Preference Prediction Accuracy Using Feature Learning
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071404
. 10.1115/1.4033427
39.
Shin
,
J.
, and
Ferguson
,
S.
,
2016
, “
Product Line Design Search Considering Reliability and Robustness Under Uncertainty in Discrete Choice Methods
,”
Volume 2A: 42nd Design Automation Conference
,
ASME
,
New York
, p.
V02AT03A039
.
40.
Klöckner
,
C. A.
,
2015
,
The Psychology of Pro-Environmental Communication
,
Palgrave Macmillan
,
London, UK
.
41.
Abraham
,
C.
, and
Sheeran
,
P.
,
2005
, “The Health Belief Model,”
Predicting Health Behavior
,
M.
Conner
, and
P.
Norman
, eds.,
McGraw-Hill
,
New York
, p.
385
.
42.
Ajzen
,
I.
,
1985
, “From Intentions to Actions: A Theory of Planned Behavior,”
Action Control
,
Springer
,
Berlin, Heidelberg
, pp.
11
39
.
43.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Orgnizational Behav. Hum. Decis. Process.
,
50
(
2
), pp.
179
211
. 10.1016/0749-5978(91)90020-T
44.
Wu
,
S. R.
,
Greaves
,
M.
,
Chen
,
J.
, and
Grady
,
S. C.
,
2017
, “
Green Buildings Need Green Occupants: A Research Framework Through the Lens of the Theory of Planned Behaviour
,”
Archit. Sci. Rev.
,
60
(
1
), pp.
5
14
. 10.1080/00038628.2016.1197097
45.
Yadav
,
R.
, and
Pathak
,
G. S.
,
2017
, “
Determinants of Consumers’ Green Purchase Behavior in a Developing Nation: Applying and Extending the Theory of Planned Behavior
,”
Ecol. Econ.
,
134
, pp.
114
122
. 10.1016/j.ecolecon.2016.12.019
46.
Scalco
,
A.
,
Noventa
,
S.
,
Sartori
,
R.
, and
Ceschi
,
A.
,
2017
, “
Predicting Organic Food Consumption: A Meta-Analytic Structural Equation Model Based on the Theory of Planned Behavior
,”
Appetite
,
112
, pp.
235
248
. 10.1016/j.appet.2017.02.007
47.
Brooks
,
J. M.
,
Iwanaga
,
K.
,
Chiu
,
C.-Y.
,
Cotton
,
B. P.
,
Deiches
,
J.
,
Morrison
,
B.
,
Moser
,
E.
, and
Chan
,
F.
,
2017
, “
Relationships Between Self-Determination Theory and Theory of Planned Behavior Applied to Physical Activity and Exercise Behavior in Chronic Pain
,”
Psychol. Health Med.
,
22
(
7
), pp.
814
822
. 10.1080/13548506.2017.1282161
48.
French
,
D. P.
, and
Hankins
,
M.
,
2003
, “
The Expectancy-Value Muddle in the Theory of Planned Behavior—And Some Proposed Solutions
,”
Br. J. Health Psychol.
,
8
(
1
), pp.
37
55
. 10.1348/135910703762879192
49.
Sniehotta
,
F. F.
,
Presseau
,
J.
, and
Araújo-Soares
,
V.
,
2014
, “
Time to Retire the Theory of Planned Behaviour
,”
Health Psychol. Rev.
,
8
(
1
), pp.
1
7
. 10.1080/17437199.2013.869710
50.
Ajzen
,
I.
,
2015
, “
The Theory of Planned Behaviour is Alive and Well, and Not Ready to Retire: A Commentary on Sniehotta, Presseau, and Araújo-Soares
,”
Health Psychol. Rev.
,
9
(
2
), pp.
131
137
. 10.1080/17437199.2014.883474
51.
Belk
,
R. W.
,
1975
, “
Situational Variables and Consumer Behavior
,”
J. Consum. Res.
,
2
(
3
), p.
157
. 10.1086/208627
52.
Green
,
M. G.
,
Palani Rajan
,
P. K.
, and
Wood
,
K. L.
,
2004
, “
Product Usage Context: Improving Customer Needs Gathering and Design Target Setting
,”
Volume 3a: 16th International Conference on Design Theory and Methodology
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
,
ASME
,
New York
, pp.
393
403
.
53.
Green
,
M. G.
,
Tan
,
J.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2005
, “
Effects of Product Usage Context on Consumer Product Preferences
,”
Volume 5a: 17th International Conference on Design Theory and Methodology
,
Long Beach, CA
,
Sept. 24–28
,
ASME
,
New York
, pp.
171
185
.
54.
Green
,
M. G.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D. J.
,
2006
, “
Frontier Design: A Product Usage Context Method
,”
Volume 4a: 18th International Conference on Design Theory and Methodology
,
Philadelphia, PA
,
Sept. 10–13
,
ASME
,
New York
, pp.
99
113
.
55.
Yannou
,
B.
,
Yvars
,
P.-A.
,
Hoyle
,
C.
, and
Chen
,
W.
,
2013
, “
Set-Based Design by Simulation of Usage Scenario Coverage
,”
J. Eng. Des.
,
24
(
8
), pp.
575
603
. 10.1080/09544828.2013.780201
56.
Wang
,
J.
,
Yannou
,
B.
,
Alizon
,
F.
, and
Yvars
,
P.-A.
,
2013
, “
A Usage Coverage-Based Approach for Assessing Product Family Design
,”
Eng. Comput.
,
29
(
4
), pp.
449
465
. 10.1007/s00366-012-0262-1
57.
He
,
L.
,
Chen
,
W.
,
Hoyle
,
C.
, and
Yannou
,
B.
,
2012
, “
Choice Modeling for Usage Context-Based Design
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031007
. 10.1115/1.4005860
58.
World Health Organization
,
2016
,
Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children
.
59.
Francis
,
J.
,
Eccles
,
M. P.
,
Johnston
,
M.
,
Walker
,
A.
,
Grimshaw
,
J.
,
Foy
,
R.
,
Kaner
,
E. F. S.
,
Smith
,
L.
, and
Bonetti
,
D.
,
2004
, “
Constructing Questionnaire Based on The Theory of Planned Behaviour, A Manual for Health Services Researchers
,”
ReBEQI WP2 Theory Planned Behaviour Questionnaires: Manual for Researchers FOREWORD
, p.
42
.
60.
Pakravan
,
M. H.
, and
MacCarty
,
N. A.
,
2019
, “
Analysis of User Intentions to Adopt Clean Energy Technologies in Low Resource Settings Using the Theory of Planned Behavior
,”
Energy Sustainable Dev.
, (In review).
61.
Hankins
,
M.
,
French
,
D.
, and
Horne
,
R.
,
2000
, “
Statistical Guidelines for Studies of the Theory of Reasoned Action and the Theory of Planned Behaviour
,”
Psychol. Health
,
15
(
2
), pp.
151
161
. 10.1080/08870440008400297
62.
Ben-Akiva
,
M. E.
, and
Lerman
,
S. R.
,
1985
,
Discrete Choice Analysis : Theory and Application to Travel Demand
,
MIT Press
,
Cambridge, MA
.
63.
Ajzen
,
I.
,
2013
,
Constructing a Theory of Planned Behaviour Questionnaire
, http://people.umass.edu/aizen/pdf/tpb.measurement.pdf
64.
Gideon
,
L.
, ed.,
2012
,
Handbook of Survey Methodology for the Social Sciences
,
Springer
,
New York
.
65.
Scott Long
,
J.
, and
Freese
,
J.
,
2014
,
Regression Models for Categorical Dependent Variables Using Stata
,
Stata Press
,
College Station, TX
, p.
589
.
66.
Pakravan
,
M. H.
, and
MacCarty
,
N.
,
2018
, “
Evaluating User Intention for Uptake of Clean Technologies Using the Theory of Planned Behavior
,”
Volume 2A: 44th Design Automation Conference
,
Quebec, Canada
,
Aug. 26–29
, ASME, New York, p. V02AT03A047.
67.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
. 10.1214/09-SS054
68.
Telenko
,
C.
, and
Seepersad
,
C.
,
2014
, “
Scoping Usage Contexts and Scenarios in Eco-Design
,”
Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
,
Buffalo, NY
,
Aug. 17–20
, ASME, New York, p. V004T06A055.
69.
Koppelman
,
F. S.
, and
Bhat
,
C.
,
2006
, “
A Self Instructing Course in Mode Choice Modeling : Multinomial and Nested Logit Models by With Technical Support From Table of Contents
,”
Elements
,
28
(
3
), pp.
501
512
.
70.
Pakravan
,
M. H.
, and
MacCarty
,
N. A.
,
2019
, “
An Agent-Based Model for Diffusion of Clean Technology Using the Theory of Planned Behavior
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE2019
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
10
.
You do not currently have access to this content.