Abstract

Kinematic reliability is an essential index that assesses the performance of the mechanism associating with uncertainties. This study proposes a novel approach to kinematic reliability analysis for planar parallel manipulators based on error propagation on plane motion groups and clipped Gaussian in terms of joint clearance, input uncertainty, and manufacturing imperfection. First, the linear relationship between the local pose distortion coming from the passive joint and that caused by other error sources, which are all represented by the exponential coordinate, are established by means of the Baker–Campbell–Hausdorff formula. Then, the second-order nonparametric formulas of error propagation on independent and dependent plane motion groups are derived in closed form for analytically determining the mean and covariance of the pose error distribution of the end-effector. On this basis, the kinematic reliability, i.e., the probability of the pose error within the specified safe region, is evaluated by a fast algorithm. Compared to the previous methods, the proposed approach has a significantly high precision for both cases with small and large errors under small and large safe bounds, which is also very efficient. Additionally, it is available for arbitrarily distributed errors and can analyze the kinematic reliability only regarding either position or orientation as well. Finally, the effectiveness and advantages of the proposed approach are verified by comparing with the Monte Carlo simulation method.

References

References
1.
Briot
,
S.
, and
Bonev
,
I. A.
,
2007
, “
Are Parallel Robots More Accurate Than Serial Robots?
,”
Trans. Can. Soc. Mech. Eng.
,
31
(
4
), pp.
445
455
. 10.1139/tcsme-2007-0032
2.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator with Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
. 10.1016/j.mechmachtheory.2018.02.005
3.
Wang
,
W.
,
Wang
,
J.
,
Fu
,
J.-H.
, and
Lu
,
G.-D.
,
2019
, “
A Moment-Matching Based Method for the Analysis of Manipulator’s Repeatability of Positioning with Arbitrarily Distributed Joint Clearances
,”
Eksploatacja I Niezawodnosc
,
21
(
1
), pp.
10
20
. 10.17531/ein.2019.1.2
4.
Zhan
,
Z.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Chen
,
G.
,
2019
, “
Unified Motion Reliability Analysis and Comparison Study of Planar Parallel Manipulators with Interval Joint Clearance Variables
,”
Mech. Mach. Theory
,
138
, pp.
58
75
. 10.1016/j.mechmachtheory.2019.03.041
5.
Choi
,
D. H.
, and
Yoo
,
H. H.
,
2006
, “
Reliability Analysis of a Robot Manipulator Operation Employing Single Monte-Carlo Simulation
,”
Proceedings of Key Engineering Materials
,
Switzerland
.
6.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
Proceedings of ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Sept. 29–Oct. 2
,
American Society of Mechanical Engineers
,
New York
, pp.
871
880
.
7.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
, pp.
251
262
. 10.1016/j.renene.2012.05.002
8.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
. 10.1115/1.1759358
9.
Ling
,
C.
, and
Lu
,
Z.
,
2019
, “
Adaptive Kriging Coupled With Importance Sampling Strategies for Time-Variant Hybrid Reliability Analysis
,”
Appl. Math. Modell
,
77
, pp.
1820
1841
.
10.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
11.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
, pp.
1
16
.
12.
Wang
,
J.
,
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Hybrid Dimension Reduction for Mechanism Reliability Analysis with Random Joint Clearances
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1396
1410
. 10.1016/j.mechmachtheory.2011.05.008
13.
Zhang
,
D.
, and
Han
,
X.
,
2019
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), pp.
1
21
.
14.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1225
1237
. 10.1016/j.apm.2009.08.009
15.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
. 10.1115/1.4003539
16.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscipl. Optim.
,
35
(
2
), pp.
117
130
. 10.1007/s00158-007-0121-7
17.
Rao
,
S. S.
, and
Bhatti
,
P.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
. 10.1016/S0951-8320(00)00106-X
18.
Du
,
X.
,
2014
, “
Time-dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
. 10.1115/1.4027636
19.
Li
,
Y.
,
Shang
,
D.
,
Fan
,
X.
, and
Liu
,
Y.
,
2019
, “
Motion Reliability Analysis of the Delta Parallel Robot Considering Mechanism Errors
,”
Math. Probl. Eng.
,
2019
, pp.
1
11
.
20.
Cui
,
G.
,
Zhang
,
H.
,
Zhang
,
D.
, and
Xu
,
F.
,
2015
, “
Analysis of the Kinematic Accuracy Reliability of a 3-DOF Parallel Robot Manipulator
,”
Int. J. Adv. Rob. Syst.
,
12
(
2
), p.
15
. 10.5772/60056
21.
Shi
,
Z.
,
1997
, “
Synthesis of Mechanical Error in Spatial Linkages Based on Reliability Concept
,”
Mech. Mach. Theory
,
32
(
2
), pp.
255
259
. 10.1016/S0094-114X(96)00049-3
22.
Shi
,
Y.
,
Lu
,
Z.
,
Xu
,
L.
, and
Chen
,
S.
,
2019
, “
An Adaptive Multiple-Kriging-Surrogate Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Modell.
,
70
, pp.
545
571
. 10.1016/j.apm.2019.01.040
23.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics-and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
. 10.1115/1.4039770
24.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
. 10.1115/1.4029222
25.
Fan
,
X.
,
Wang
,
P.
, and
Hao
,
F.
,
2019
, “
Reliability-Based Design Optimization of Crane Bridges Using Kriging-Based Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
993
1005
. 10.1007/s00158-018-2183-0
26.
Wang
,
L.
,
Zhang
,
X.
, and
Zhou
,
Y.
,
2018
, “
An Effective Approach for Kinematic Reliability Analysis of Steering Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
180
, pp.
62
76
. 10.1016/j.ress.2018.07.009
27.
Zhang
,
Y.
,
He
,
X.
,
Yang
,
Z.
,
Liu
,
Q.
, and
Wen
,
B.
,
2010
, “
Reliability-Based Sensitivity of Mechanical Components With Arbitrary Distribution Parameters
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1187
1193
. 10.1007/s12206-010-0334-3
28.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
. 10.1016/j.mechmachtheory.2012.08.009
29.
Luo
,
K.
, and
Du
,
X.
,
2013
, “
Probabilistic Mechanism Analysis with Bounded Random Dimension Variables
,”
Mech. Mach. Theory
,
60
, pp.
112
121
. 10.1016/j.mechmachtheory.2012.10.001
30.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists: Updated and Expanded Edition
,
Courier Dover Publications
,
New York
.
31.
Chirikjian
,
G. S.
,
2011
,
Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications
,
Springer Science & Business Media
,
Berlin
.
32.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2008
, “
Nonparametric Second-Order Theory of Error Propagation on Motion Groups
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1258
1273
. 10.1177/0278364908097583
33.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2006
, “
Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
591
602
. 10.1109/TRO.2006.878978
34.
Chirikjian
,
G. S.
,
2009
,
Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods
,
Springer Science & Business Media
,
Berlin
.
35.
Smith
,
R. C.
, and
Cheeseman
,
P.
,
1986
, “
On the Representation and Estimation of Spatial Uncertainty
,”
Int. J. Rob. Res.
,
5
(
4
), pp.
56
68
. 10.1177/027836498600500404
36.
Su
,
S.-F.
, and
Lee
,
C. G.
,
1991
, “
Uncertainty Manipulation and Propagation and Verification of Applicability of Actions in Assembly Tasks
,”
Proceedings 1991 IEEE International Conference on Robotics and Automation
,
IEEE
,
Silverspring, MD
, pp.
2471
2476
.
37.
Anderson
,
T.
,
2003
,
An Introduction to Multivariate Statistical Analysis (Wiley Series in Probability and Statistics)
,
Wiley
,
New York
.
38.
Johnson
,
R. A.
, and
Wichern
,
D. W.
,
2002
,
Applied Multivariate Statistical Analysis
,
Prentice hall
,
Upper Saddle River, NJ
.
40.
Genz
,
A.
, and
Bretz
,
F.
,
2009
,
Computation of Multivariate Normal and t Probabilities
,
Springer Science & Business Media
,
Berlin
.
41.
Zhu
,
J.
, and
Ting
,
K.-L.
,
2000
, “
Uncertainty Analysis of Planar and Spatial Robots with Joint Clearances
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1239
1256
. 10.1016/S0094-114X(99)00076-2
You do not currently have access to this content.