Abstract

There are significant quality and reliability problems for components/products made by additive manufacturing (AM) due to various reasons. Selective laser melting (SLM) process is one of the popular AM techniques and it suffers from low quality and reliability issue as well. Among many reasons, the lack of accurate and efficient models to simulate the SLM process could be the most important one because reliability and quality quantification rely on accurate models; otherwise, a large number of experiments should be conducted for reliability and quality assurance. To date, modeling techniques for the SLM process are either computationally expensive based on finite element (FE) modeling or economically expensive requiring a significant amount of experiment data for data-driven modeling. This paper proposes the integration of FE and data-driven modeling with systematic calibration and validation framework for the SLM process based on limited experiment data. Multi-fidelity models are the FE model for the SLM process and a machine learning model constructed based on the FE model instead of real experiment data. The machine learning model, after incorporation of the learned physics from the FE model, is then further improved based on limited real experiment data through the calibration and validation framework. The proposed work enables the development of highly efficient and accurate models for melt pool prediction of the SLM process under various configurations. The effectiveness of the framework is demonstrated by real experiment data under 14 different printing configurations.

References

References
1.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
. 10.1016/j.jmatprotec.2003.11.051
2.
Kruth
,
J.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Froyen
,
L.
, and
Rombouts
,
M.
,
2005
, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
11
(
1
), pp.
26
36
. 10.1108/13552540510573365
3.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
. 10.1007/s40964-017-0030-2
4.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J. J. S.
,
Pal
,
D.
,
Strucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J. J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,”
Proceedings of Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
256
267
.
5.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
. 10.1016/j.actamat.2010.02.004
6.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H. A.
, and
Maier
,
H. J.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
, pp.
300
307
. 10.1016/j.ijfatigue.2012.11.011
7.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
. 10.1016/j.addma.2014.08.002
8.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
. 10.1016/j.matdes.2015.07.147
9.
Song
,
B.
,
Dong
,
S.
,
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V
,”
Mater. Des.
,
35
, pp.
120
125
. 10.1016/j.matdes.2011.09.051
10.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
. 10.1016/j.addma.2014.12.008
11.
Wycisk
,
E.
,
Solbach
,
A.
,
Siddique
,
S.
,
Herzog
,
D.
,
Walther
,
F.
, and
Emmelmann
,
C.
,
2014
, “
Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties
,”
Phys. Procedia
,
56
(
C
), pp.
371
378
. 10.1016/j.phpro.2014.08.120
12.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
. 10.1007/s00170-017-0703-5
13.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
. 10.1016/j.ijmachtools.2009.07.004
14.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Proceedings of Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
796
814
.
15.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2018
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6Al-4V
,”
IISE Trans.
,
51
(
2
), pp.
1
17
. 10.1080/24725854.2018.1461964
16.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
17.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
. 10.1016/j.addma.2018.03.022
18.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081004
. 10.1115/1.4043798
19.
Wang
,
Z.
,
Liu
,
P.
,
Ji
,
Y.
,
Mahadevan
,
S.
,
Horstemeyer
,
M. F.
,
Hu
,
Z.
,
Chen
,
L.
, and
Chen
,
L. Q.
,
2019
, “
Uncertainty Quantification in Metallic Additive Manufacturing Through Physics-Informed Data-Driven Modeling
,”
JOM
,
71
(
8
), pp.
1
10
. 10.1007/s11837-019-03555-z
20.
Wei
,
L. C.
,
Ehrlich
,
L. E.
,
Powell-Palm
,
M. J.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Malen
,
J. A.
,
2018
, “
Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
201
208
. 10.1016/j.addma.2018.02.002
21.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M.-H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
. 10.1007/PL00021868
22.
Olleak
,
A.
, and
Xi
,
Z.
,
2018
, “
Finite Element Modeling of the Selective Laser Melting Process for Ti-6Al-4V
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International
,
Austin, TX
,
Aug. 13–15
, pp.
1710
1720
.
23.
Eagar
,
T.
, and
Tsai
,
N.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
24.
Hensman
,
J.
,
Mills
,
R.
,
Pierce
,
S. G.
,
Worden
,
K.
, and
Eaton
,
M.
,
2010
, “
Locating Acoustic Emission Sources in Complex Structures Using Gaussian Processes
,”
Mech. Syst. Sig. Process.
,
24
(
1
), pp.
211
223
. 10.1016/j.ymssp.2009.05.018
25.
Yu
,
J.
,
2018
, “
State of Health Prediction of Lithium-Ion Batteries: Multiscale Logic Regression and Gaussian Process Regression Ensemble
,”
Reliab. Eng. Syst. Safe.
,
174
, pp.
82
95
. 10.1016/j.ress.2018.02.022
26.
Wang
,
Y.
,
Zhao
,
W.
,
Zhou
,
G.
,
Gao
,
Q.
, and
Wang
,
C.
,
2018
, “
Optimization of an Auxetic Jounce Bumper Based on Gaussian Process Metamodel and Series Hybrid GA-SQP Algorithm
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2515
2525
. 10.1007/s00158-017-1869-z
27.
Zhang
,
J.
,
Xiao
,
M.
,
Gao
,
L.
, and
Fu
,
J.
,
2018
, “
A Novel Projection Outline Based Active Learning Method and Its Combination With Kriging Metamodel for Hybrid Reliability Analysis With Random and Interval Variables
,”
Comput. Meth. Appl. Mech. Eng.
,
341
, pp.
32
52
. 10.1016/j.cma.2018.06.032
28.
Zhang
,
J.
,
Xiao
,
M.
,
Gao
,
L.
, and
Chu
,
S.
,
2019
, “
A Combined Projection-Outline-Based Active Learning Kriging and Adaptive Importance Sampling Method for Hybrid Reliability Analysis With Small Failure Probabilities
,”
Comput. Meth. Appl. Mech. Eng.
,
344
, pp.
13
33
. 10.1016/j.cma.2018.10.003
29.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1014
1020
. 10.1115/1.1906264
30.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
. 10.1016/j.probengmech.2009.10.003
31.
Choi
,
S.-K.
,
Grandhi
,
R. V.
,
Canfield
,
R. A.
, and
Pettit
,
C. L.
,
2004
, “
Polynomial Chaos Expansion With Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
,
42
(
6
), pp.
1191
1198
. 10.2514/1.2220
32.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscipl. Optim.
,
43
(
3
), pp.
419
442
. 10.1007/s00158-010-0568-9
33.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K.-L.
, and
Apley
,
D. W.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
15–16
), pp.
1327
1337
. 10.1016/j.cma.2008.11.023
34.
Jung
,
B. C.
,
Park
,
J.
,
Oh
,
H.
,
Kim
,
J.
, and
Youn
,
B. D.
,
2015
, “
A Framework of Model Validation and Virtual Product Qualification With Limited Experimental Data Based on Statistical Inference
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
573
583
. 10.1007/s00158-014-1155-2
35.
Xi
,
Z.
,
Pan
,
H.
, and
Yang
,
R.-J.
,
2017
, “
Time Dependent Model Bias Correction for Model Based Reliability Analysis
,”
Struct. Saf.
,
66
, pp.
74
83
. 10.1016/j.strusafe.2017.02.001
36.
Bae
,
S.
,
Kim
,
N. H.
, and
Jang
,
S.-G.
,
2018
, “
Reliability-Based Design Optimization Under Sampling Uncertainty: Shifting Design Versus Shaping Uncertainty
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1845
1855
. 10.1007/s00158-018-1936-0
37.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
. 10.1115/1.4041946
38.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Statist. Soc. B
,
63
(
3
), pp.
425
450
. 10.1111/1467-9868.00294
39.
Quiñonero-Candela
,
J.
, and
Rasmussen
,
C. E.
,
2005
, “
A Unifying View of Sparse Approximate Gaussian Process Regression
,”
J. Mach. Learn. Res.
,
6
, pp.
1939
1959
.
40.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
41.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
. 10.1016/j.cma.2007.07.030
42.
Xi
,
Z.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2012
, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
45
(
1
), pp.
33
52
. 10.1007/s00158-011-0656-5
43.
Zhang
,
J.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
A New Method for Reliability Analysis of Structures With Mixed Random and Convex Variables
,”
Appl. Math. Model.
,
70
, pp.
206
220
.10.1016/j.apm.2019.01.025
You do not currently have access to this content.