Abstract

In this paper, we study the effects of mechanical compliance on safety in physical human–robot interaction (pHRI). More specifically, we compare the effect of joint compliance and link compliance on the impact force assuming a contact occurred between a robot and a human head. We first establish pHRI system models that are composed of robot dynamics, an impact contact model, and head dynamics. These models are validated by Simscape simulation. By comparing impact results with a robotic arm made of a compliant link (CL) and compliant joint (CJ), we conclude that the CL design produces a smaller maximum impact force given the same lateral stiffness as well as other physical and geometric parameters. Furthermore, we compare the variable stiffness joint (VSJ) with the variable stiffness link (VSL) for various actuation parameters and design parameters. While decreasing stiffness of CJs cannot effectively reduce the maximum impact force, CL design is more effective in reducing impact force by varying the link stiffness. We conclude that the CL design potentially outperforms the CJ design in addressing safety in pHRI and can be used as a promising alternative solution to address the safety constraints in pHRI.

References

1.
Müller
,
R.
,
Vette
,
M.
, and
Scholer
,
M.
,
2014
, “
Inspector Robot–A New Collaborative Testing System Designed for the Automotive Final Assembly Line
,”
Assembly Autom.
,
34
(
4
), pp.
370
378
. 10.1108/AA-06-2014-050
2.
Kragic
,
D.
,
Marayong
,
P.
,
Li
,
M.
,
Okamura
,
A. M.
, and
Hager
,
G. D.
,
2005
, “
Human-Machine Collaborative Systems for Microsurgical Applications
,”
Int. J. Robot. Res.
,
24
(
9
), pp.
731
741
. 10.1177/0278364905057059
3.
Bauer
,
A.
,
Wollherr
,
D.
, and
Buss
,
M.
,
2008
, “
Human–Robot Collaboration: A Survey
,”
Int. J. Humanoid Rob.
,
5
(
01
), pp.
47
66
. 10.1142/S0219843608001303
4.
Albu-Schäffer
,
A.
,
Haddadin
,
S.
,
Ott
,
C.
,
Stemmer
,
A.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2007
, “
The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,”
Ind. Rob.: An Int. J.
,
34
(
5
), pp.
376
385
. 10.1108/01439910710774386
5.
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
. 10.1016/j.robot.2013.06.009
6.
Ficuciello
,
F.
,
Villani
,
L.
, and
Siciliano
,
B.
,
2015
, “
Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
850
863
. 10.1109/TRO.2015.2430053
7.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1993
, “
Dynamic Tactile Sensing: Perception of Fine Surface Features With Stress Rate Sensing
,”
IEEE Trans. Rob. Autom.
,
9
(
2
), pp.
140
151
. 10.1109/70.238278
8.
Feddema
,
J. T.
, and
Novak
,
J. L.
,
1994
, “
Whole Arm Obstacle Avoidance for Teleoperated Robots
,”
IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
3303
3309
.
9.
Lumelsky
,
V. J.
, and
Cheung
,
E.
,
1993
, “
Real-Time Collision Avoidance in Teleoperated Whole-Sensitive Robot Arm Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
1
), pp.
194
203
. 10.1109/21.214777
10.
Heinzmann
,
J.
, and
Zelinsky
,
A.
,
2003
, “
Quantitative Safety Guarantees for Physical Human-Robot Interaction
,”
Int. J. Robot. Res.
,
22
(
7–8
), pp.
479
504
. 10.1177/02783649030227004
11.
Najmaei
,
N.
, and
Kermani
,
M. R.
,
2011
, “
Applications of Artificial Intelligence in Safe Human–Robot Interactions
,”
IEEE Trans. Syst. Man Cybern., Part B (Cybernetics)
,
41
(
2
), pp.
448
459
. 10.1109/TSMCB.2010.2058103
12.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
105
118
. 10.1109/TMECH.2008.2004561
13.
Avanzini
,
G. B.
,
Ceriani
,
N. M.
,
Zanchettin
,
A. M.
,
Rocco
,
P.
, and
Bascetta
,
L.
,
2014
, “
Safety Control of Industrial Robots Based on a Distributed Distance Sensor
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2127
2140
. 10.1109/TCST.2014.2300696
14.
Bicchi
,
A.
,
Tonietti
,
G.
, and
Piaggio
,
E.
,
2002
, “
Design, Realization and Control of Soft Robot Arms for Intrinsically Safe Interaction With Humans
,”
Proceedings of the IARP/RAS Workshop on Technical Challenges for Dependable Robots in Human Environments
,
Toulouse, France
,
Oct. 7–8
, pp.
79
87
.
15.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and” Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Robot. Automat. Mag.
,
11
(
2
), pp.
22
33
. 10.1109/MRA.2004.1310939
16.
Bicchi
,
A.
,
Bavaro
,
M.
,
Boccadamo
,
G.
,
De Carli
,
D.
,
Filippini
,
R.
,
Grioli
,
G.
,
Piccigallo
,
M.
,
Rosi
,
A.
,
Schiavi
,
R.
,
Sen
,
S.
, and
Tonietti
,
G.
,
2008
, “
Physical Human-Robot Interaction: Dependability, Safety, and Performance
,”
10th IEEE International Workshop on Advanced Motion Control
,
Trento, Italy
,
Mar. 26–28
, pp.
9
14
.
17.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2006
, “Optimal Mechanical/Control Design for Safe and Fast Robotics,”
Experimental Robotics IX
,
Springer
,
New York
, pp.
311
320
.
18.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
526
531
.
19.
Schiavi
,
R.
,
Grioli
,
G.
,
Sen
,
S.
, and
Bicchi
,
A.
,
2008
, “
Vsa-II: A Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting With Humans
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
2171
2176
.
20.
Chen
,
L.
,
Garabini
,
M.
,
Laffranchi
,
M.
,
Kashiri
,
N.
,
Tsagarakis
,
N. G.
,
Bicchi
,
A.
, and
Caldwell
,
D. G.
,
2013
, “
Optimal Control for Maximizing Velocity of the ™ Compliant Actuator
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
516
522
.
21.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1741
1746
.
22.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The Dlr Fsj: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5082
5089
.
23.
Friedl
,
W.
,
Höppner
,
H.
,
Petit
,
F.
, and
Hirzinger
,
G.
,
2011
, “
Wrist and Forearm Rotation of the Dlr Hand Arm System: Mechanical Design, Shape Analysis and Experimental Validation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1836
1842
.
24.
Zinn
,
M.
,
Roth
,
B.
,
Khatib
,
O.
, and
Salisbury
,
J. K.
,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
379
398
. 10.1177/0278364904042193
25.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Rob. Res.
,
28
(
1112
), pp.
1507
1527
. 10.1177/0278364909343970
26.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2010
, “
New Insights Concerning Intrinsic Joint Elasticity for Safety
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
2181
2187
.
27.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
4508
4513
.
28.
Koganezawa
,
K.
,
2005
, “
Mechanical Stiffness Control for Antagonistically Driven Joints
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, Alta., Canada
,
Aug. 2–6
, pp.
1544
1551
.
29.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
30.
Carpino
,
G.
,
Accoto
,
D.
,
Sergi
,
F.
,
Tagliamonte
,
N. L.
, and
Guglielmelli
,
E.
,
2012
, “
A Novel Compact Torsional Spring for Series Elastic Actuators for Assistive Wearable Robots
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121002
. 10.1115/1.4007695
31.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
. 10.1115/1.4028705
32.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2007
, “
Safe Link Mechanism Based on Passive Compliance for Safe Human-Robot Collision
,”
IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1152
1157
.
33.
Park
,
J.-J.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1332
1348
. 10.1016/j.mechmachtheory.2007.10.004
34.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061005
. 10.1115/1.4001666
35.
López-Martínez
,
J.
,
Blanco-Claraco
,
J. L.
,
García-Vallejo
,
D.
, and
Giménez-Fernández
,
A.
,
2015
, “
Design and Analysis of a Flexible Linkage for Robot Safe Operation in Collaborative Scenarios
,”
Mech. Mach. Theory
,
92
, pp.
1
16
. 10.1016/j.mechmachtheory.2015.04.018
36.
Zhang
,
M.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2016
, “
Force Capabilities of Two-Degree-of-Freedom Serial Robots Equipped With Passive Isotropic Force Limiters
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051002
. 10.1115/1.4032120
37.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2014
, “
Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2476
2481
.
38.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2017
, “
A Novel Concept for Safe, Stiffness-Controllable Robot Links
,”
Soft Rob.
,
4
(
1
), pp.
16
22
. 10.1089/soro.2016.0015
39.
She
,
Y.
,
Su
,
H.-J.
, and
Hurd
,
C. J.
,
2015
, “
Shape Optimization of 2D Compliant Links for Design of Inherently Safe Robots
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
,
Paper No. DETC2015-46622
.
40.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
Design and Modeling of a Compliant Link for Inherently Safe Corobots
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011001
. 10.1115/1.4038530
41.
She
,
Y.
,
Su
,
H.-J.
,
Lai
,
C.
, and
Meng
,
D.
,
2016
, “
Design and Prototype of a Tunable Stiffness Arm for Safe Human-Robot Interaction
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
Paper No. DETC2016-59523
.
42.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
, and
Lai
,
C.
,
2019
, “
Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human-Robot Interaction
,”
ASME J. Mech. Rob.
,
12
(
1
), pp.
1
15
.10.1115/1.4044840
43.
She
,
Y.
,
2018
, “
Compliant Robotic Arms for Inherently Safe Physical Human–Robot Interaction
”.
Ph.D. thesis
,
The Ohio State University
,
Columbus, OH
.
44.
Laffranchi
,
M.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2010
, “
A Variable Physical Damping Actuator (VPDA) for Compliant Robotic Joints
,”
IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
1668
1674
.
45.
Laffranchi
,
M.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2013
, “
Analysis and Development of a Semiactive Damper for Compliant Actuation Systems
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
744
753
. 10.1109/TMECH.2012.2184293
46.
Chew
,
C.-M.
,
Hong
,
G.-S.
, and
Zhou
,
W.
,
20042004
, “
Series Damper Actuator: A Novel Force/Torque Control Actuator
,”
Fourth IEEE/RAS International Conference on Humanoid Robots
,
Santa Monica, CA
,
Nov. 10–12
, pp.
533
546
.
47.
Fauteux
,
P.
,
Lauria
,
M.
,
Heintz
,
B.
, and
Michaud
,
F.
,
2010
, “
Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
607
618
. 10.1109/TRO.2010.2052880
48.
Kostamo
,
E.
,
Focchi
,
M.
,
Guglielmino
,
E.
,
Kostamo
,
J.
,
Semini
,
C.
,
Buchli
,
J.
,
Pietola
,
M.
, and
Caldwell
,
D.
,
2014
, “
Magnetorheologically Damped Compliant Foot for Legged Robotic Application
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021003
. 10.1115/1.4025966
49.
Sodano
,
H. A.
,
Bae
,
J.-S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
,
2006
, “
Improved Concept and Model of Eddy Current Damper
,”
ASME J. Vib. Acoust.
,
128
(
3
), pp.
294
302
. 10.1115/1.2172256
50.
Hou
,
C.-Y.
,
2008
, “
Fluid Dynamics and Behavior of Nonlinear Viscous Fluid Dampers
,”
J. Struct. Eng.
,
134
(
1
), pp.
56
63
. 10.1061/(ASCE)0733-9445(2008)134:1(56)
51.
Versace
,
J.
,
1971
,
A Review of the Severity Index
,
Technical Report, SAE Technical Paper
.
52.
Gao
,
D.
, and
Wampler
,
C. W.
,
2009
, “
Head Injury Criterion
,”
IEEE Rob. Autom. Mag.
,
16
(
4
), pp.
71
74
. 10.1109/MRA.2009.934824
53.
Haddadin
,
S.
,
Albu-Schaffer
,
A.
,
Frommberger
,
M.
,
Rossmann
,
J.
, and
Hirzinger
,
G.
,
2009
, “
The “DLR Crash Report”: Towards a Standard Crash-Testing Protocol for Robot Safety-Part I: Results
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
272
279
.
54.
ISO10218-1:2006
,
2006
,
Robots for Industrial Environments - Safety Requirements. Part I: Robot
,
International Organization for Standarization
.
55.
Melvin
,
J.
,
1980
,
Human Tolerance to Impact Conditions as Related to Motor Vehicle Design
,
SAE Report J885, April 1980
.
56.
Framework
,
E.
,
2003
, “
Improved Frontal Impact Protection Through a World Frontal Impact dummy
,”
Project No. GRD1 1999, 10559
.
57.
Park
,
J.-J.
,
Haddadin
,
S.
,
Song
,
J.-B.
, and
Albu-Schäffer
,
A.
,
2011
, “
Designing Optimally Safe Robot Surface Properties for Minimizing the Stress Characteristics of Human-Robot Collisions
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5413
5420
.
58.
She
,
Y.
,
Meng
,
D.
,
Cui
,
J.
, and
Su
,
H.-J.
,
2017
, “
On the Impact Force of Human-Robot Interaction: Joint Compliance vs. Link Compliance
,”
2017 IEEE International Conference on Robotics and Automation
,
Marina Bay, Singapore
,
May 29–June 3
, pp.
6718
6723
.
59.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
60.
López-Martínez
,
J.
,
García-Vallejo
,
D.
,
Giménez-Fernández
,
A.
, and
Torres-Moreno
,
J.
,
2014
, “
A Flexible Multibody Model of a Safety Robot Arm for Experimental Validation and Analysis of Design Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011003
. 10.1115/1.4025285
61.
Book
,
W. J.
,
1984
, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Rob. Res.
,
3
(
3
), pp.
87
101
. 10.1177/027836498400300305
62.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
. 10.1109/TRO.2016.2640183
You do not currently have access to this content.