Abstract

We introduce a method to analyze and modify a shape to make it manufacturable for a given additive manufacturing (AM) process. Different AM technologies, process parameters, or materials introduce geometric constraints on what is manufacturable or not. Given an input 3D model and minimum printable feature size dictated by the manufacturing process characteristics and parameters, our algorithm generates a corrected geometry that is printable with the intended AM process. A key issue in model correction for manufacturability is the identification of critical features that are affected by the printing process. To address this challenge, we propose a topology aware approach to construct the allowable space for a print head to traverse during the 3D printing process. Combined with our build orientation optimization algorithm, the amount of modifications performed on the shape is kept at minimum while providing an accurate approximation of the as-manufactured part. We demonstrate our method on a variety of 3D models and validate it by 3D printing the results.

References

1.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph.
,
34
(
4
), p.
136
. 10.1145/2766926
2.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
35
(
4
), p.
44
. 10.1145/2897824.2925922
3.
Liu
,
H.
,
Hu
,
Y.
,
Zhu
,
B.
,
Matusik
,
W.
, and
Sifakis
,
E.
,
2018
, “
Narrow-Band Topology Optimization on a Sparsely Populated Grid
,”
ACM Trans. Graph.
,
37
(
6
), p.
251
. 10.1145/3272127.3275012
4.
Arora
,
R.
,
Jacobson
,
A.
,
Langlois
,
T. R.
,
Huang
,
Y.
,
Mueller
,
C. T.
,
Matusik
,
W.
,
Shamir
,
A.
,
Singh
,
K.
, and
Levin
,
D. I. W.
,
2019
, “
Volumetric Michell Trusses for Parametric Design & Fabrication
,”
Proceedings of the 3rd ACM Symposium on Computation Fabrication (SCF)
,
Pittsburgh, PA
,
June 16–18
, pp.
6:1
6:13
.
5.
Ulu
,
E.
,
McCann
,
J.
, and
Kara
,
L. B.
,
2019
, “
Structural Design Using Laplacian Shells
,”
Comput. Graph. Forum
,
38
(
5
), pp.
85
98
. 10.1111/cgf.13791
6.
Bhushan
,
B.
, and
Caspers
,
M.
,
2017
, “
An Overview of Additive Manufacturing (3d Printing) for Microfabrication
,”
Microsys. Technol.
,
23
(
4
), pp.
1117
1124
. 10.1007/s00542-017-3342-8
7.
Ulu
,
E.
,
Huang
,
R.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061701
. 10.1115/1.4042112
8.
Livesu
,
M.
,
Ellero
,
S.
,
Martínez
,
J.
,
Lefebvre
,
S.
, and
Attene
,
M.
,
2017
, “
From 3d Models to 3d Prints: An Overview of the Processing Pipeline
,”
Comput. Graph. Forum
,
36
(
2
), pp.
537
564
. 10.1111/cgf.13147
9.
Bermano
,
A. H.
,
Funkhouser
,
T.
, and
Rusinkiewicz
,
S.
,
2017
, “
State of the Art in Methods and Representations for Fabrication-Aware Design
,”
Comput. Graph. Forum
,
36
(
2
), pp.
509
535
. 10.1111/cgf.13146
10.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3d-Printable Parts
,”
ACM Trans. Graph.
,
31
(
6
), p.
129
. 10.1145/2366145.2366148
11.
Vanek
,
J.
,
Galicia
,
J. A. G.
,
Benes
,
B.
,
Měch
,
R.
,
Carr
,
N.
,
Stava
,
O.
, and
Miller
,
G. S.
,
2014
, “
Packmerger: A 3d Print Volume Optimizer
,”
Comput. Graph. Forum
,
33
(
6
), pp.
322
332
. 10.1111/cgf.12353
12.
Chen
,
X.
,
Zhang
,
H.
,
Lin
,
J.
,
Hu
,
R.
,
Lu
,
L.
,
Huang
,
Q.
,
Benes
,
B.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2015
, “
Dapper: Decompose-and-Pack for 3d Printing
,”
ACM Trans. Graph.
,
34
(
6
), p.
213
. 10.1145/2816795.2818087
13.
Huang
,
P.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2013
, “
Intersection-Free and Topologically Faithful Slicing of Implicit Solid
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021009
. 10.1115/1.4024067
14.
Wang
,
W.
,
Chao
,
H.
,
Tong
,
J.
,
Yang
,
Z.
,
Tong
,
X.
,
Li
,
H.
,
Liu
,
X.
, and
Liu
,
L.
,
2015
, “
Saliency-Peserving Slicing Optimization for Effective 3d Printing
,”
Comput. Graph. Forum
,
34
(
6
), pp.
148
160
. 10.1111/cgf.12527
15.
Alexa
,
M.
,
Hildebrand
,
K.
, and
Lefebvre
,
S.
,
2017
, “
Optimal Discrete Slicing
,”
ACM Trans. Graph.
,
36
(
4
), p.
64b
. 10.1145/3072959.2999536
16.
Mao
,
H.
,
Kwok
,
T.-H.
,
Chen
,
Y.
, and
Wang
,
C. C.
,
2019
, “
Adaptive Slicing Based on Efficient Profile Analysis
,”
Computer Aided Des.
,
107
, pp.
89
101
. 10.1016/j.cad.2018.09.006
17.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graph. Forum
,
33
(
5
), pp.
117
125
. 10.1111/cgf.12437
18.
Dumas
,
J.
,
Hergel
,
J.
, and
Lefebvre
,
S.
,
2014
, “
Bridging the Gap: Automated Steady Scaffoldings for 3d Printing
,”
ACM Trans. Graph.
,
33
(
4
), p.
98
. 10.1145/2601097.2601153
19.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
Computer Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
20.
Xie
,
Y.
, and
Chen
,
X.
,
2017
, “
Support-Free Interior Carving for 3d Printing
,”
Visual Inf.
,
1
(
1
), pp.
9
15
. 10.1016/j.visinf.2017.01.002
21.
Wei
,
X.
,
Qiu
,
S.
,
Zhu
,
L.
,
Feng
,
R.
,
Tian
,
Y.
,
Xi
,
J.
, and
Zheng
,
Y.
,
2018
, “
Toward Support-Free 3d Printing: A Skeletal Approach for Partitioning Models
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
10
), pp.
2799
2812
. 10.1109/TVCG.2017.2767047
22.
Wang
,
C. C.
, and
Chen
,
Y.
,
2013
, “
Thickening Freeform Surfaces for Solid Fabrication
,”
Rapid Prototyping J.
,
19
(
6
), pp.
395
406
. 10.1108/RPJ-02-2012-0013
23.
Cabiddu
,
D.
, and
Attene
,
M.
,
2017
, “
ɛ-maps: Characterizing, Detecting and Thickening Thin Features in Geometric Models
,”
Comput. Graph.
,
66
, pp.
143
153
. 10.1016/j.cag.2017.05.014
24.
Attene
,
M.
,
2018
, “
As-Eact-as-Possible Repair of Unprintable STL Files
,”
Rapid Prototyping J.
,
24
(
5
), pp.
855
864
. 10.1108/RPJ-11-2016-0185
25.
Simplify3D, Inc.
,
2019
, “
Simplify3d
,” https://www.simplify3d.com/, Accessed April 5, 2019.
26.
Ultimaker B.V.
,
2019
, “
Ultimaker cura
,” https://ultimaker.com/en/products/ultimaker-cura-software, Accessed April 5, 2019.
27.
Prusa Research s.r.o.
,
2019
, “
Slic3r (Prusa Edition)
,” https://www.prusa3d.com/slic3r-prusa-edition/, Accessed April 5, 2019.
28.
Ju
,
T.
,
2004
, “
Robust Repair of Polygonal Models
,”
ACM Trans. Graph.
,
23
(
3
), pp.
888
895
. 10.1145/1015706.1015815
29.
Attene
,
M.
,
Campen
,
M.
, and
Kobbelt
,
L.
,
2013
, “
Polygon Mesh Repairing: An Application Perspective
,”
ACM Comput. Surv.
,
45
(
2
), p.
15
. 10.1145/2431211.2431214
30.
Moylan
,
S.
,
Slotwinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2012
, “
Proposal for a Standardized Test Artifact for Additive Manufacturing Machines and Processes
,”
Proceedings of the 2012 Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
6
8
.
31.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “Voxel-Based Assessment of Printability of 3d Shapes,”
Mathematical Morphology and Its Applications to Image and Signal Processing
,
P.
Soille
,
M.
Pesaresi
, and
G. K.
Ouzounis
, eds.,
Springer
,
Berlin
, pp.
393
404
.
32.
Tedia
,
S.
, and
Williams
,
C. B.
,
2016
, “
Manufacturability Analysis Tool for Additive Manufacturing Using Voxel-Based Geometric Modeling
,”
Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Aug. 8–10
, pp.
3
22
.
33.
Shi
,
Y.
,
Zhang
,
Y.
,
Baek
,
S.
,
Backer
,
W. D.
, and
Harik
,
R.
,
2018
, “
Manufacturability Analysis for Additive Manufacturing Using a Novel Feature Recognition Technique
,”
Computer Aided Des. Appl.
,
15
(
6
), pp.
941
952
. 10.1080/16864360.2018.1462574
34.
Jaiswal
,
P.
, and
Rai
,
R.
,
2019
, “
A Geometric Reasoning Approach for Additive Manufacturing Print Quality Assessment and Automated Model Correction
,”
Computer Aided Des.
,
109
, pp.
1
11
. 10.1016/j.cad.2018.12.001
35.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
. 10.1115/1.4029374
36.
Lam
,
L.
,
Lee
,
S.-W.
, and
Suen
,
C. Y.
,
1992
, “
Thinning Methodologies—A Comprehensive Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
9
), pp.
869
885
. 10.1109/34.161346
37.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Computer Aided Des.
,
30
(
5
), pp.
343
356
. 10.1016/S0010-4485(97)00083-3
38.
Ahn
,
D.
,
Kim
,
H.
, and
Lee
,
S.
,
2007
, “
Fabrication Direction Optimization to Minimize Post-Machining in Layered Manufacturing
,”
Int. J. Mach. Tools. Manuf.
,
47
(
3
), pp.
593
606
. 10.1016/j.ijmachtools.2006.05.004
39.
Ezair
,
B.
,
Massarwi
,
F.
, and
Elber
,
G.
,
2015
, “
Orientation Analysis of 3d Objects Toward Minimal Support Volume in 3d-Printing
,”
Comput. Graph.
,
51
, pp.
117
124
. 10.1016/j.cag.2015.05.009
40.
Morgan
,
H. D.
,
Cherry
,
J. A.
,
Jonnalagadda
,
S.
,
Ewing
,
D.
, and
Sienz
,
J.
,
2016
, “
Part Orientation Optimisation for the Additive Layer Manufacture of Metal Components
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5
), pp.
1679
1687
. 10.1007/s00170-015-8151-6
41.
Umetani
,
N.
, and
Schmidt
,
R.
,
2013
, “
Cross-Sectional Structural Analysis for 3d Printing Optimization
.”
SIGGRAPH Asia 2013 Technical Briefs, SA ’13
,
Nov. 19–22
, p.
5
.
42.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Ozdoganlar
,
O. B.
, and
Kara
,
L. B.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
. 10.1115/1.4030998
43.
Zhang
,
X.
,
Le
,
X.
,
Panotopoulou
,
A.
,
Whiting
,
E.
, and
Wang
,
C. C. L.
,
2015
, “
Perceptual Models of Preference in 3d Printing Direction
,”
ACM Trans. Graph.
,
34
(
6
), p.
215
. 10.1145/2816795.2818121
44.
Hildebrand
,
K.
,
Bickel
,
B.
, and
Alexa
,
M.
,
2013
, “
Orthogonal Slicing for Additive Manufacturing
,”
Comput. Graph.
,
37
(
6
), pp.
669
675
. 10.1016/j.cag.2013.05.011
45.
Wang
,
W. M.
,
Zanni
,
C.
, and
Kobbelt
,
L.
,
2016
, “
Improved Surface Quality in 3d Printing by Optimizing the Printing Direction
,”
Proceedings of the 37th Annual Conference of the European Association for Computer Graphics
, EG ’16,
Eurographics Association
,
May 9–13
, pp.
59
70
.
46.
Lefebvre
,
S.
,
2013
, “
Icesl: A gpu Accelerated Modeler and Slicer
,”
Proceedings of AEFA13, 18th European Forum on Additive Manufacturing
,
Paris, France
,
June 25–27
, pp.
1
17
.
47.
Guo
,
Z.
, and
Hall
,
R. W.
,
1989
, “
Parallel Thinning With Two-Subiteration Algorithms
,”
Commun. ACM
,
32
(
3
), pp.
359
373
. 10.1145/62065.62074
48.
Hilitch
,
C. J.
,
1969
, “Linear Skeletons From Square Cupboards,”
Machine Intelligence 4
,
B.
Meltzer
, and
D.
Michie
, eds.,
Edinburgh University Press
,
Edinburgh, UK
, p.
403
.
49.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
. 10.1126/science.220.4598.671
50.
Gradientspace
,
2019
, “gsslicer,” http://www.gradientspace.com/opensource, Accessed April 18, 2019.
51.
Museth
,
K.
,
Lait
,
J.
,
Johanson
,
J.
,
Budsberg
,
J.
,
Henderson
,
R.
,
Alden
,
M.
,
Cucka
,
P.
,
Hill
,
D.
, and
Pearce
,
A.
,
2013
, “
Openvdb: An Open-Source Data Structure and Toolkit for High-Resolution Volumes
,”
ACM SIGGRAPH 2013 Courses
,
SIGGRAPH ’13, ACM
,
July 21–25
, p.
19
.
52.
Behandish
,
M.
,
Mirzendehdel
,
A. M.
, and
Nelaturi
,
S.
,
2019
, “
A Classification of Topological Discrepancies in Additive Manufacturing
,”
Comp. Aid. Des.
,
115
, pp.
206
217
. 10.1016/j.cad.2019.05.032
53.
Chen
,
Y.
, and
Wang
,
C. C. L.
,
2013
, “
Regulating Complex Geometries Using Layered Depth-Normal Images for Rapid Prototyping and Manufacturing
,”
Rapid Prototyping J.
,
19
(
4
), pp.
253
268
. 10.1108/13552541311323263
You do not currently have access to this content.