Abstract

The paper proposes a new methodology for time-dependent reliability analysis of vibratory systems using a combination of a first-order, four-moment (FOFM) method and a non-Gaussian Karhunen–Loeve (NG-KL) expansion. The approach can also be used for random vibrations studies. The vibratory system is nonlinear and is excited by stationary non-Gaussian input random processes which are characterized by their first four marginal moments and autocorrelation function. The NG-KL expansion expresses each input non-Gaussian process as a linear combination of uncorrelated, non-Gaussian random variables and computes their first four moments. The FOFM method then uses the moments of the NG-KL variables to calculate the moments and autocorrelation function of the output processes based on a first-order Taylor expansion (linearization) of the system equations of motion. Using the output moments and autocorrelation function, another NG-KL expansion expresses the output processes in terms of uncorrelated non-Gaussian variables in the time domain, allowing the generation of output trajectories. The latter are used to estimate the time-dependent probability of failure using Monte Carlo simulation (MCS). The computational cost of the proposed approach is proportional to the number of NG-KL random variables and is significantly lower than that of other recently developed methodologies which are based on sampling. The accuracy and efficiency of the proposed methodology is demonstrated using a two-degree-of-freedom nonlinear vibratory system with random coefficients excited by a stationary non-Gaussian random process.

References

1.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
2.
Rice
,
S. O.
,
1954
, “Mathematical Analysis of Random Noise,”
Bell. Syst. Tech. J.
,
23
, pp.
282
332
. [Re-published in:
Wax
N.
, ed.,
1954
Selected Papers on Noise and Stochastic Processes
,
Dover
,
New York
]. 10.1002/j.1538-7305.1944.tb00874.x
3.
Rackwitz
,
R.
,
1998
, “
Computational Techniques in Stationary and Non-Stationary Load Combination—A Review and Some Extensions
,”
ASME J. Struct. Eng.
,
25
(
1
), pp.
1
20
.
4.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renew. Energy
,
48
, pp.
251
262
. 10.1016/j.renene.2012.05.002
5.
Mourelatos
,
Z. P.
,
Majcher
,
M.
,
Pandey
,
V.
, and
Baseski
,
I.
,
2015
, “
Time-Dependent Reliability Analysis Using the Total Probability Theorem
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031405
. 10.1115/1.4029326
6.
Mourelatos
,
Z. P.
,
Majcher
,
M.
, and
Geroulas
,
V.
,
2016
, “
Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031007
. 10.1115/1.4032720
7.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Structural and Multidiscipl. Optim.
,
47
(
5
), pp.
765
781
. 10.1007/s00158-012-0839-8
8.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscipl. Optim.
,
48
, pp.
893
907
. 10.1007/s00158-013-0937-2
9.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Safe.
,
84
(
1
), pp.
75
86
. 10.1016/j.ress.2003.10.005
10.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
, pp.
674
679
. 10.1115/1.3167691
11.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
12.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
13.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
. 10.1115/1.4027636
14.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
15.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1999
,
Random Vibration and Statistical Linearization
,
Dover Publications Inc.
,
Mineola, NY
.
16.
Li
,
C. C.
, and
Kiureghian
,
A. D.
,
1993
, “
Optimal Discretization of Random Fields
,”
ASME J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
. 10.1061/(ASCE)0733-9399(1993)119:6(1136)
17.
Zhang
,
J.
, and
Ellingwood
,
B.
,
1994
, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis
,”
ASME J. Eng. Mech.
,
120
(
12
), pp.
2660
2677
. 10.1061/(ASCE)0733-9399(1994)120:12(2660)
18.
Sudret
,
B.
, and
Der Kiureghian
,
A.
(
2000
). “
Stochastic Finite Element Methods and Reliability—A State of the Art Report
,”
University of California
,
Berkeley, CA
,
Report No. UCB/SEMM-2000/08
.
19.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
, 2nd ed.,
John Wiley & Sons
,
Chichester, England
.
20.
Spanos
,
P. D.
,
Kougioumtzoglou
,
I. A.
, and
Soize
,
C.
,
2011
, “
On the Determination of the Power Spectrum of Randomly Excited Oscillators via Stochastic Averaging: An Alternative Approach
,”
Probabilistic Eng. Mech.
,
26
, pp.
10
15
. 10.1016/j.probengmech.2010.06.001
21.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2012
, “
Harmonic Wavelets Based Statistical Linearization for Response Evolutionary Power Spectrum Determination
,”
Probabilistic Eng. Mech.
,
27
, pp.
57
68
. 10.1016/j.probengmech.2011.05.008
22.
Shields
,
M. D.
,
Deodatis
,
G.
, and
Bocchini
,
P.
,
2011
, “
A Simple and Efficient Methodology to Approximate a General Non-Gaussian Stationary Stochastic Process by a Translation Process
,”
Probabilistic Eng. Mech.
,
26
, pp.
511
519
. 10.1016/j.probengmech.2011.04.003
23.
Joo
,
H. K.
, and
Sapsis
,
T.
,
2016
, “
A Moment-Equation-Copula-Closure Method for Nonlinear Vibrational Systems Subjected to Correlated Noise
,”
Probabilistic Eng. Mech.
,
46
, pp.
120
132
. 10.1016/j.probengmech.2015.12.010
24.
Tsianika
,
V.
,
Geroulas
,
V.
,
Mourelatos
,
Z.
, and
Baseski
,
I.
,
2017
, “
A Methodology for Fatigue Life Estimation of Linear Vibratory Systems Under Non-Gaussian Loads
,”
SAE Int. J. Commer. Veh.
,
10
(
2
). 10.4271/2017-01-0197
25.
Geroulas
,
V.
,
Mourelatos
,
Z. P.
,
Tsianika
,
V.
, and
Baseski
,
I.
,
2018
, “
Reliability Analysis of Nonlinear Vibratory Systems Under Non-Gaussian Loads
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021404
. 10.1115/1.4038212
26.
Shinozuka
,
M.
, and
Jan
,
C.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
ASME J. Sound Vib.
,
25
, pp.
111
128
. 10.1016/0022-460X(72)90600-1
27.
Yamazaki
,
Y.
, and
Shinozuka
,
M.
,
1988
, “
Digital Generation of Non-Gaussian Stochastic Fields
,”
ASME J. Eng. Mech.
,
114
(
7
), pp.
1183
1197
. 10.1061/(ASCE)0733-9399(1988)114:7(1183)
28.
Sakamoto
,
S.
, and
Ghanem
,
R.
,
2002
, “
Simulation of Multi-Dimensional Non-Gaussian Non-Stationary Random Fields
,”
Probabilistic Eng. Mech.
,
17
, pp.
167
176
. 10.1016/S0266-8920(01)00037-6
29.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
. 10.1137/S1064827501387826
30.
Dick
,
J.
,
Kuo
,
F. Y.
, and
Sloan
,
I. H.
,
2013
, “
High Dimensional Integration—The Quasi Monte Carlo Way
,”
Acta Numer.
,
22
, pp.
133
288
.
31.
Phoon
,
K. K.
,
Huang
,
H. W.
, and
Quek
,
S. T.
,
2005
, “
Simulation of Strongly Non-Gaussian Processes Using Karhunen–Loeve Expansion
,”
Probabilistic Eng. Mech.
,
20
(
2
), pp.
188
198
. 10.1016/j.probengmech.2005.05.007
32.
Lugannani
,
R.
, and
Rice
,
S.
,
1980
, “
Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
,
12
(
2
), pp.
475
490
. 10.2307/1426607
33.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Saddle Point Approximation Reliability Method for Quadratic Functions in Normal Variables
,”
Struct. Safe.
,
71
, pp.
24
32
. 10.1016/j.strusafe.2017.11.001
34.
Newland
,
D. E.
,
1993
,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
, 3rd ed.,
Dover Pubications Inc
.,
Mineola, NY
.
35.
Jin
,
X.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
,
131
, p.
021006
. 10.1115/1.3042159
36.
Mansour
,
R.
,
Kulachenko
,
A.
,
Chen
,
W.
, and
Olsson
,
M.
,
2019
, “
Stochastic Constitutive Model of Isotropic Thin Fiber Networks Based on Stochastic Volume Elements
,”
Materials
,
12
(
3
), pp.
1
28
. 10.3390/ma12030538
37.
Florian
,
A.
,
1992
, “
An Efficient Sampling Scheme: Updated Latin Hypercube Sampling
,”
Probabilistic Eng. Mech.
,
7
, pp.
123
130
. 10.1016/0266-8920(92)90015-A
38.
Moon
,
M. Y.
,
Choi
,
K. K.
,
Gaul
,
N.
, and
Lamb
,
D.
,
2019
, “
Treating Epistemic Uncertainty Using Bootstrapping Selection of Input Distribution Model for Confidence-Based Reliability Assessment
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031402
. 10.1115/1.4042149
You do not currently have access to this content.