Abstract

The expensive computational cost is always a major concern for reliability-based design optimization (RBDO) of complex problems. The performance of RBDO can be lowered by the inaccuracy of reliability analysis (RA) which is caused by multiple local optimums and multiple design points in highly non-linear space. In order to reduce the computational burden and guarantee the accuracy of RA (and thus to improve the RBDO performance), a global RBDO algorithm by adopting an improved constraint boundary sampling (GRBDO-ICBS) method is proposed. Specifically, the GRBDO-ICBS method first narrows the concerned search region by using a Kriging-based global search. The accuracies of the design points are verified by the expected risk function (ERF), and the corresponding inaccurate design points are added into training samples to update Kriging. Then a multi-start gradient-based sequential RBDO is carried out, which tries to find out all multiple design points in the concerned search region. The performance of GRBDO-ICBS is demonstrated by four examples. All results have shown that the proposed method can achieve similar accuracy as Monte Carlo simulation (MCS)-based RBDO but with a much lower computational cost.

References

1.
Zhang
,
W.
, and
Kang
,
Z.
,
2017
, “
Robust Shape and Topology Optimization Considering Geometric Uncertainties With Stochastic Level set Perturbation
,”
Int. J. Numer. Methods Eng.
,
110
(
1
), pp.
31
56
. 10.1002/nme.5344
2.
Ghasemi
,
H.
,
Brighenti
,
R.
,
Zhuang
,
X.
,
Muthu
,
J.
, and
Rabczuk
,
T.
,
2015
, “
Optimal Fiber Content and Distribution in Fiber-Reinforced Solids Using a Reliability and NURBS Based Sequential Optimization Approach
,”
Struct. Multidiscip. O.
,
51
(
1
), pp.
99
112
. 10.1007/s00158-014-1114-y
3.
Hu
,
W.
,
Choi
,
K. K.
, and
Cho
,
H.
,
2016
, “
Reliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life Under Dynamic Wind Load Uncertainty
,”
Struct. Multidiscip. O.
,
54
(
4
), pp.
953
970
. 10.1007/s00158-016-1462-x
4.
Rahman
,
S.
,
2008
, “
A Polynomial Dimensional Decomposition for Stochastic Computing
,”
Int. J. Numer. Methods Eng.
,
76
(
13
), pp.
2091
2116
. 10.1002/nme.2394
5.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
. 10.1016/0045-7949(78)90046-9
6.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
. 10.1115/1.1561042
7.
Yang
,
D.
, and
Yi
,
P.
,
2009
, “
Chaos Control of Performance Measure Approach for Evaluation of Probabilistic Constraints
,”
Struct. Multidiscip. O.
,
38
(
1
), pp.
83
92
. 10.1007/s00158-008-0270-3
8.
Periçaro
,
G. A.
,
Santos
,
S. R.
,
Ribeiro
,
A. A.
, and
Matioli
,
L. C.
,
2015
, “
HLRF–BFGS Optimization Algorithm for Structural Reliability
,”
Appl. Math. Model.
,
39
(
7
), pp.
2025
2035
. 10.1016/j.apm.2014.10.024
9.
Yang
,
D.
,
2010
, “
Chaos Control for Numerical Instability of First Order Reliability Method
,”
Commun. Nonlinear Sci.
,
15
(
10
), pp.
3131
3141
. 10.1016/j.cnsns.2009.10.018
10.
Li
,
G.
,
Meng
,
Z.
, and
Hu
,
H.
,
2015
, “
An Adaptive Hybrid Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscip. O.
,
51
(
5
), pp.
1051
1065
. 10.1007/s00158-014-1195-7
11.
Keshtegar
,
B.
, and
Hao
,
P.
,
2018
, “
A Hybrid Descent Mean Value for Accurate and Efficient Performance Measure Approach of Reliability-Based Design Optimization
,”
Comput. Method Appl. M.
,
336
, pp.
237
259
. 10.1016/j.cma.2018.03.006
12.
Hao
,
P.
,
Wang
,
Y.
,
Liu
,
C.
,
Wang
,
B.
, and
Wu
,
H.
,
2017
, “
A Novel non-Probabilistic Reliability-Based Design Optimization Algorithm Using Enhanced Chaos Control Method
,”
Comput. Method Appl. M.
,
318
, pp.
572
593
. 10.1016/j.cma.2017.01.037
13.
Der Kiureghian
,
A.
,
Lin
,
H. Z.
, and
Hwang
,
S. J.
,
1987
, “
Second-Order Reliability Approximations
,”
ASME J. Eng. Mech-ASCE
,
113
(
8
), pp.
1208
1225
. 10.1061/(ASCE)0733-9399(1987)113:8(1208)
14.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
. 10.1002/nme.4775
15.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Method Appl. M.
,
198
(
1
), pp.
14
27
. 10.1016/j.cma.2008.03.004
16.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2015
, “
Post Optimization for Accurate and Efficient Reliability-Based Design Optimization Using Second-Order Reliability Method Based on Importance Sampling and its Stochastic Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
107
(
2
), pp.
93
108
. 10.1002/nme.5150
17.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
2006
,
Methods of Structural Safety
,
Courier Corporation
,
Massachusetts
.
18.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
19.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
,
1998
, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Saf.
,
20
(
1
), pp.
37
49
. 10.1016/S0167-4730(97)00026-X
20.
Chen
,
Z.
,
Wu
,
Z.
,
Li
,
X.
,
Chen
,
G.
,
Gao
,
L.
,
Gan
,
X.
,
Chen
,
G.
, and
Wang
,
S.
,
2019
, “
A Multiple-Design-Point Approach for Reliability-Based Design Optimization
,”
Eng. Optimiz.
,
51
(
5
), pp.
875
895
. 10.1080/0305215X.2018.1500561
21.
Lin
,
C.-Y.
,
Huang
,
W.-H.
,
Jeng
,
M.-C.
, and
Doong
,
J.-L.
,
1997
, “
Study of an Assembly Tolerance Allocation Model Based on Monte Carlo Simulation
,”
ASME J. Mater. Process. Technol.
,
70
(
1
), pp.
9
16
. 10.1016/S0924-0136(97)00034-4
22.
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
,
2002
, “
Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation
,”
Comput. Method Appl. M.
,
191
(
32
), pp.
3491
3507
. 10.1016/S0045-7825(02)00287-6
23.
Melchers
,
R. E.
,
1989
, “
Importance Sampling in Structural Systems
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
. 10.1016/0167-4730(89)90003-9
24.
John
,
H.
,
2013
,
Monte Carlo Methods
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
25.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
. 10.1080/00401706.1979.10489755
26.
Park
,
J.-S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
ASME J. Stat. Plan. Infer.
,
39
(
1
), pp.
95
111
. 10.1016/0378-3758(94)90115-5
27.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. O.
,
49
(
3
), pp.
401
416
. 10.1007/s00158-013-0988-4
28.
Yang
,
X.
,
Liu
,
Y.
,
Gao
,
Y.
,
Zhang
,
Y.
, and
Gao
,
Z.
,
2015
, “
An Active Learning Kriging Model for Hybrid Reliability Analysis With Both Random and Interval Variables
,”
Struct. Multidiscip. O.
,
51
(
5
), pp.
1003
1016
. 10.1007/s00158-014-1189-5
29.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A new Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Safe.
,
157
, pp.
152
165
. 10.1016/j.ress.2016.09.003
30.
Choi
,
S.-H.
,
Lee
,
G.
, and
Lee
,
I.
,
2018
, “
Adaptive Single-Loop Reliability-Based Design Optimization and Post Optimization Using Constraint Boundary Sampling
,”
ASME J. Mech. Sci. Technol.
,
32
(
7
), pp.
3249
3262
. 10.1007/s12206-018-0627-5
31.
Yang
,
X.
,
Liu
,
Y.
,
Fang
,
X.
, and
Mi
,
C.
,
2018
, “
Estimation of Low Failure Probability Based on Active Learning Kriging Model With a Concentric Ring Approaching Strategy
,”
Struct. Multidiscip. O.
,
58
(
3
), pp.
1175
1186
. 10.1007/s00158-018-1960-0
32.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
. 10.2113/gsecongeo.58.8.1246
33.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
. 10.1016/j.strusafe.2011.01.002
34.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-box Functions
,”
ASME J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
35.
Dumas
,
A.
,
Echard
,
B.
,
Gayton
,
N.
,
Rochat
,
O.
,
Dantan
,
J.-Y.
, and
Van Der Veen
,
S.
,
2013
, “
AK-ILS: An Active Learning Method Based on Kriging for the Inspection of Large Surfaces
,”
Precis. Eng.
,
37
(
1
), pp.
1
9
. 10.1016/j.precisioneng.2012.07.007
36.
Yang
,
X.
,
Liu
,
Y.
, and
Gao
,
Y.
,
2016
, “
Unified Reliability Analysis by Active Learning Kriging Model Combining With Random-set Based Monte Carlo Simulation Method
,”
Int. J. Numer. Methods Eng.
,
108
(
11
), pp.
1343
1361
. 10.1002/nme.5255
37.
Melchers
,
R. E.
, and
Beck
,
A. T.
,
2018
,
Structural Reliability: Analysis and Prediction
,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
39.
Nataf
,
A.
,
1962
, “
Determination des distribution don t les marges sont donnees
,”
Comptes Rendus Acad Sci.
225
, pp.
42
43
.
40.
Tvedt
,
L.
,
1990
, “
Distribution of Quadratic Forms in Normal Space—Application to Structural Reliability
,”
ASME J. Eng. Mech-ASCE
,
116
(
6
), pp.
1183
1197
. 10.1061/(ASCE)0733-9399(1990)116:6(1183)
41.
Au
,
S. K.
, and
Beck
,
J. L.
,
1999
, “
A new Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
. 10.1016/S0167-4730(99)00014-4
42.
Matheron
,
G.
,
1973
, “
The Intrinsic Random Functions and Their Applications
,”
Adv. Appl. Probab.
,
5
(
3
), pp.
439
468
. 10.2307/1425829
43.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13
), pp.
1463
1476
. 10.1016/j.compstruc.2007.05.023
44.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. O.
,
52
(
1
), pp.
55
70
. 10.1007/s00158-014-1173-0
45.
Chen
,
X.
,
Hasselman
,
T.
,
Neill
,
D.
,
Chen
,
X.
,
Hasselman
,
T.
, and
Neill
,
D.
,
1997
, “
Reliability Based Structural Design Optimization for Practical Applications
,”
38th Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Apr. 7–10
, p.
1403
.
46.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
47.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—a new Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
48.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2011
, “
Equivalent Standard Deviation to Convert High-Reliability Model to low-Reliability Model for Efficiency of Sampling-Based RBDO
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
1127
1138
.
49.
Lee
,
J. J.
, and
Lee
,
B. C.
,
2005
, “
Efficient Evaluation of Probabilistic Constraints Using an Envelope Function
,”
Eng. Optimiz.
,
37
(
2
), pp.
185
200
10.1080/03052150512331315505.
50.
Havens
,
D.
,
Shiyekar
,
S.
,
Norris
,
A.
,
Bird
,
R. K.
,
Kapania
,
R. K.
, and
Olliffe
,
R.
,
2011
, “
Design, Optimization, and Evaluation of Integrally-Stiffened al-2139 Panel With Curved Stiffeners
,”
National Aeronautics and Space Administration
.
You do not currently have access to this content.