Abstract

Cutter head with multiple stick blades is widely used in the mass production of hypoid and spiral bevel gears because they allow more blades per revolution of the head cutter. However, the stick blade geometry for a head cutter that is used in face-milling and face-hobbing methods to produce hypoid and spiral bevel gears is complicated and difficult to describe. The geometry of a stick blade is defined in terms of cutting parameters such as the rake angle, the hook angle, and the side relief angle that are required to perform cutting and the theoretical cutter profile in the offset plane or the neutral cutter profile in the normal plane of an imaginary generating crown gear. This study uses a 5-axis profile grinder to grind the stick blade. The machine settings for the profile grinder and the corresponding grinding wheel geometry are derived for the grinding of each face of the stick blade. A sensitivity analysis for the machine settings is conducted to determine the accuracy of the profile grinder. The numerical example shows that the proposed mathematical model is sufficiently accurate for industrial applications.

References

1.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Method of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 1. Calculations for Machine Settings for Member Gear Manufacture of the Formate and Helixform Hypoid Gears
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
83
88
. 10.1115/1.3254890
2.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Method of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 2. Machine Setting Calculations for the Pinions of Formate and Helixform Gears
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
89
101
. 10.1115/1.3254891
3.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Method of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 3. Analysis and Optimal Synthesis Methods for Mismatch Gearing and its Application for Hypoid Gears of “Formate” and “Helixform”
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
102
110
. 10.1115/1.3254837
4.
Fong
,
Z. H.
,
2000
, “
Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
136
142
. 10.1115/1.533552
5.
Shih
,
Y. P.
,
Fong
,
Z. H.
, and
Lin
,
C. Y.
,
2007
, “
Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
38
47
. 10.1115/1.2359471
6.
Shih
,
Y. P.
, and
Zhang
,
C. X.
,
2017
, “
Manufacture of Spiral Bevel Gears Using Standard Profile Angle Blade Cutters on a Five-Axis Computer Numerical Control Machine
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061017
. 10.1115/1.4035961
7.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
8.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2009
, “
A Load Distribution Model for Hypoid Gears Using Ease-Off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1848
1865
. 10.1016/j.mechmachtheory.2009.03.009
9.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071004
. 10.1115/1.4001722
10.
Simon
,
V.
,
2009
, “
Head-Cutter for Optimal Tooth Modifications in Spiral Bevel Gears
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1420
1435
. 10.1016/j.mechmachtheory.2008.11.007
11.
Simon
,
V.
,
2014
, “
Optimization of Face-Hobbed Hypoid Gears
,”
Mech. Mach. Theory
,
77
, pp.
164
181
. 10.1016/j.mechmachtheory.2014.02.003
12.
Simon
,
V.
,
2014
, “
Optimal Machine-Tool Settings for the Manufacture of Face-Hobbed Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081004
. 10.1115/1.4027635
13.
Xie
,
S.
,
2011
, “
An Accurate Approach to Modeling the Genuine Tooth Surfaces of the Face-Milled Spiral Bevel and Hypoid Gears
,”
Ph.D. dissertation
,
Concordia University
,
Montreal, Canada
.
14.
Xie
,
S.
,
2013
, “
A Genuine Face Milling Cutter Geometric Model for Spiral Bevel and Hypoid Gears
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2619
2626
. 10.1007/s00170-012-4678-y
15.
Wasif
,
M.
,
Chen
,
Z. C.
, and
Hasan
,
S. M.
,
2016
, “
Determination of Cutter-Head Geometry for the Face-Milling of Hypoid Gears
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
3081
3090
. 10.1007/s00170-016-8430-x
16.
Wasif
,
M.
, and
Chen
,
Z. C.
,
2016
, “
An Accurate Approach to Determine the Cutting System for the Face Milling of Hypoid Gears
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1873
1888
. 10.1007/s00170-015-7823-6
17.
Habibi
,
M.
,
Chen
,
Z. C.
, and
Fang
,
Z.
,
2015
, “
Tool Wear Improvement in Face-Hobbing of Bevel Gears by Re-Designing the Cutting Blades
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
1888
1893
. 10.1016/j.ifacol.2015.06.362
18.
Habibi
,
M.
, and
Chen
,
Z. C.
,
2016
, “
An Accurate and Efficient Approach to Undeformed Chip Geometry in Face-Hobbing and Its Application in Cutting Force Prediction
,”
ASME J. Mech. Des.
,
138
(
2
), p.
023302
. 10.1115/1.4032090
19.
Habibi
,
M.
, and
Chen
,
Z. C.
,
2016
, “
A New Approach to Blade Design With Constant Rake and Relief Angles for Face-Hobbing of Bevel Gears
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031005
. 10.1115/1.4030936
20.
Habibi
,
M.
, and
Chen
,
Z. C.
,
2016
, “
Machining Setting Optimization for Formate® Face-Hobbing of Bevel Gears With the Cutting Force and Tool Wear Constraints
,”
ASME J. Mech. Des.
,
138
(
9
), p.
093301
. 10.1115/1.4033992
21.
Stadtfeld
,
H. J.
,
2014
,
Gleason Bevel Gear Technology
,
The Gleason Works
,
Rochester, NY
.
22.
Stadtfeld
,
H. J.
,
2016
, “
Practical Gear Characteristics: Process Characteristics of the Most Popular Cutting Methods
,” Gear Technology, March/April, www.geartechnology.com
23.
Stadtfeld
,
H. J.
,
2003
, “
The Two-Sided-Ground Bevel Cutting Tool
,” Gear Technology, May/June, www.geartechnology.com
24.
Stadtfeld
,
H. J.
,
2007
, “
The Optimal High-Speed Cutting of Bevel Gear
,” Gear Technology, August, www.geartechnology.com
25.
Stadtfeld
,
H. J.
,
2007
, “
The New Freedoms: Three- & Four-Face Ground Bevel Gear Cutting Blades
,” Gear Technology, September/October, www.geartechnology.com
26.
Ryan
,
A. B.
, and
Thomas
,
C. B.
,
1977
, “
Cutter Head Assembly for Gear Cutting Machines
,” U.S. Patent No. 4,060,881.
27.
Krenzer
,
T. J.
,
1985
, “
Cutter and Method for Gear Manufacture
,” U.S. Patent No. 4,525,108.
28.
Campisi
,
G.
, and
Knaden
,
M.
,
2007
, “
Method for Calibrating a Grinding Machine
,” U.S. Patent No. 7,172,490 B2.
29.
The Gleason Works
,
2001
, Spiral Bevel Gear Design Computer Software, “CAGETM (Computer Aided Gear Engineering),” Windows Release 2.0.9.1, 1000 University Ave., Rochester, NY.
30.
Klingelnberg GmbH
,
2003
, Spiral Bevel Gear Design Computer Software, “KIMoS 5 (Klingelnberg Integrated Manufacturing of Spiral Bevel Gears),” Version 4.0, Peterstraße 45, 42499 Hückeswagen, German.
You do not currently have access to this content.