Abstract

Limited academic course offerings and high barriers to incorporate industrial additive manufacturing (AM) systems into education has led to an underserved demand for a highly skilled AM workforce. In this research, virtual reality (VR) is proposed as a medium to help teach introductory concepts of AM in an interactive, scalable manner. Before implementing VR as a standard tool to teach introductory concepts of AM, we must evaluate the effectiveness of this medium for the subject. We test the hypothesis that VR can be used to teach students introductory concepts of AM in a way that is as effective as teaching the same concepts in a real-world physical setting. The research also explores differences in learning between participants who engage in a hands-on interactive lesson and participants who engage in a hands-off passive lesson. The study assesses participants’ AM knowledge through pre-/post-AM lesson evaluation. AM conceptual knowledge gained and changes in self-efficacy are evaluated to make an argument for the effectiveness of VR as an AM learning tool. Our findings in this research indicate that both interactive and passive VR may be indeed used to effectively teach introductory concepts of AM; we also found advantages to using interactive VR for improving AM self-efficacy.

References

1.
Wohlers Associates
,
2014
, “
3D Printing and Additive Manufacturing State of the Industry
, Annual 665 Worldwide Progress Report,” Wohlers Associates, Inc., p.
276
.
2.
Murr
,
D. L. E.
,
2015
, “
3D Printing: Opportunities, Challenges, and Policy Implications of Additive Manufacturing
,”
US Government Accountability Office
, pp.
1
57
.
3.
Ford
,
S. L. N.
,
2014
, “
Additive Manufacturing Technology: Potential Implications for U. S. Manufacturing Competitiveness
,”
J. Int. Commer. Econ.
,
6
, pp.
1
35
.
4.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2016
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
. 10.1016/j.addma.2016.08.002
5.
Baumers
,
M.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Hague
,
R.
,
2016
, “
The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push
,”
Technol. Forecast. Soc. Change
,
102
, pp.
193
201
. 10.1016/j.techfore.2015.02.015
6.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem- and Project-Based Approach
,”
23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2012
,
Austin, TX
,
Aug. 6–8
, pp.
81
92
.
7.
Go
,
J.
, and
Hart
,
A. J.
,
2016
, “
A Framework for Teaching the Fundamentals of Additive Manufacturing and Enabling Rapid Innovation
,”
Addit. Manuf.
,
10
, pp.
76
87
. 10.1016/j.addma.2016.03.001
8.
Yang
,
Z.
, and
Liu
,
Q.
,
2007
, “
Research and Development of Web-Based Virtual Online Classroom
,”
Comput. Educ.
,
48
(
2
), pp.
171
184
. 10.1016/j.compedu.2004.12.007
10.
Rosenfeld Halverson
,
E.
,
Imberly
,
K.
, and
Sheridan
,
M.
,
2014
, “
Harvard Educational Review Winter 2014
,”
Harv. Educ. Rev.
,
84
(
4
), pp.
495
505
. 10.17763/haer.84.4.34j1g68140382063
11.
Pausch
,
R.
,
1993
, “
Three Views of Virtual Reality: An Overview
,”
Computer
,
26
(
2
), pp.
79
80
.
12.
Mitchell
,
D.
,
2009
, “
First Person: The Promise of Virtual Design
,”
Civ. Eng. Mag. Arch.
,
79
(
9
), pp.
50
59
. 10.1061/ciegag.0000245
13.
Minetola
,
P.
,
Iuliano
,
L.
,
Bassoli
,
E.
, and
Gatto
,
A.
,
2015
, “
Impact of Additive Manufacturing on Engineering Education—Evidence From Italy
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
535
555
. 10.1108/RPJ-09-2014-0123
14.
Gatto
,
A.
,
Bassoli
,
E.
,
Denti
,
L.
,
Iuliano
,
L.
, and
Minetola
,
P.
,
2015
, “
Multi-Disciplinary Approach in Engineering Education: Learning With Additive Manufacturing and Reverse Engineering
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
598
603
. 10.1108/RPJ-09-2014-0134
15.
Loy
,
J.
,
2014
, “
ELearning and EMaking: 3D Printing Blurring the Digital and the Physical
,”
Educ. Sci.
,
4
(
1
), pp.
108
121
. 10.3390/educsci4010108
16.
Schelly
,
C.
,
Anzalone
,
G.
,
Wijnen
,
B.
, and
Pearce
,
J. M.
,
2015
, “
Open-Source 3-D Printing Technologies for Education: Bringing Additive Manufacturing to the Classroom
,”
J. Vis. Lang. Comput.
,
28
, pp.
226
237
. 10.1016/j.jvlc.2015.01.004
17.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
18.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
. 10.1016/j.cad.2015.04.001
19.
Rayna
,
T.
, and
Striukova
,
L.
,
2016
, “
From Rapid Prototyping to Home Fabrication: How 3D Printing Is Changing Business Model Innovation
,”
Technol. Forecast. Soc. Change
,
102
, pp.
214
224
. 10.1016/j.techfore.2015.07.023
20.
Starkey
,
E. M.
,
Spencer
,
C.
,
Lesniak
,
K.
,
Tucker
,
C.
, and
Miller
,
S. R.
,
2017
, “
Do Technological Advancements Lead to Learning Enhancements? An Exploration in Virtual Product Disection
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
11
.
21.
Zacharia
,
Z. C.
,
Olympiou
,
G.
, and
Papaevripidou
,
M.
,
2008
, “
Effects of Experimenting With Physical and Virtual Manipulatives on Students’ Conceptual Understanding in Heat and Temperature
,”
J. Res. Sci. Teach.
,
45
(
9
), pp.
1012
1035
. 10.1002/tea.20260
22.
Psotka
,
J.
,
1995
, “
Immersive Tutoring Systems: Virtual Reality and Education and Training.
,”
Instr. Sci.
,
23
, pp.
405
431
. 10.1007/BF00896880
23.
Bowman
,
D. A.
, and
McMahan
,
R. P.
,
2007
, “
Virtual Reality How Much Immersion Is Enough
,”
Computer
,
40
(
7
), pp.
36
43
. 10.1109/MC.2007.257
24.
Bharathi
,
A. K. B. G.
, and
Tucker
,
C. S.
,
2015
, “
Investigating the Impact of Interactive Immersive Virtual Reality Environments in Enhancing Task Performance in Online Engineering Design Activities
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
11
.
25.
Lesniak
,
K.
,
Terpenny
,
J.
,
Tucker
,
C. S.
,
Anumba
,
C.
, and
Bilén
,
S. G.
,
2017
, “
Immersive Distributed Design Through Real-Time Capture, Translation, and Rendering of Three-Dimensional Mesh Data 1
,”
J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031010
. 10.1115/1.4035001
26.
Tseng
,
T. L. B.
,
Pan
,
R.
,
Zheng
,
J.
,
Awalt
,
C. J.
,
Gonzalez
,
M. V.
, and
Medina
,
F.
,
2011
, “
Digital Additive Manufacturing for Engineering Education: A Virtual Rapid Prototyping Simulator Approach
,”
2011 ASEE Annual Conference Expo
,
Vancouver, British Columbia
,
June 26–29
, pp.
1
14
.
27.
Renner
,
A.
,
Holub
,
J.
,
Sridhar
,
S.
,
Evans
,
G.
, and
Winer
,
E.
,
2015
, “
A Virtual Reality Application for Additive Manufacturing Process Training
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1A: 35th Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
10
.
28.
Lara-Prieto
,
V.
,
Bravo-Quirino
,
E.
,
Rivera-Campa
,
M. A.
, and
Gutierrez-Arredondo
,
J. E.
,
2015
, “
An Innovative Self-Learning Approach to 3D Printing Using Multimedia and Augmented Reality on Mobile Devices
,”
International Conference on Virtual and Augmented Reality in Education
,
Monterrey City, Mexico
,
Nov. 19–21
, pp.
59
65
.
29.
Leidner
,
D. E.
, and
Jarvenpaa
,
S. L.
,
1995
, “
The Use of Information Technology to Enhance Management School Education: A Theoretical View
,”
Manage. Inf. Syst. Q.
,
19
(
3
), pp.
265
291
. 10.2307/249596
30.
Krathwohl
,
D. R.
,
2002
, “
A Revision of Bloom’s Taxonomy: An Overview
,”
Theory Pract.
,
41
(
4
), pp.
212
218
. 10.1207/s15430421tip4104_2
31.
Moriarty
,
B.
,
2014
, “
Research Design and the Predictive Power of Measures of Self-Efficacy
,”
Issues Educ. Res.
,
24
(
1
), p.
55
.
32.
Bandura
,
A.
,
2006
,
Guide for Construction Self-Efficacy Scales
,
Information Age Publishing
,
Greenwich, CT
.
33.
Carberry
,
A. R.
,
Lee
,
H.-S.
, and
Ohland
,
M. W.
,
2010
, “
Measuring Engineering Design Self-Efficacy
,”
J. Eng. Educ.
,
99
(
1
), pp.
71
. 10.1002/j.2168-9830.2010.tb01043.x
34.
Tuckman
,
B. W.
,
1993
, “
Motivational Components of College Students’ Performance and Productivity
,” American Educational Research Association.
35.
Taylor
,
M. S.
,
Locke
,
E. A.
,
Lee
,
C.
, and
Gist
,
M. E.
,
1984
, “
Type A Behavior and Faculty Research Productivity: What Are the Mechanisms?
,”
Organ. Behav. Hum. Perform.
,
34
(
3
), pp.
402
418
. 10.1016/0030-5073(84)90046-1
36.
Lloyd
,
J.
,
Persaud
,
N. V.
, and
Powell
,
T. E.
,
2009
, “
Equivalence of Real-World and Virtual-Reality Route Learning: A Pilot Study
,”
CyberPsychol. Behav.
,
12
(
4
), pp.
423
427
. 10.1089/cpb.2008.0326
37.
Brooks
,
B. M.
,
Penn
,
P. R.
,
Attree
,
E. A.
,
Rose
,
F. D.
, and
Parslow
,
D. M.
,
2002
, “
Training in Virtual Environments: Transfer to Real World Tasks and Equivalence to Real Task Training
,”
Ergonomics
,
43
(
4
), pp.
494
511
.
38.
Khalifa
,
M.
, and
Lam
,
R.
,
2002
, “
Web-Based Learning: Effects on Learning Process and Outcome
,”
IEEE Trans. Educ.
,
45
(
4
), pp.
350
356
. 10.1109/TE.2002.804395
You do not currently have access to this content.