Abstract

Evidence theory has the powerful feature to quantify epistemic uncertainty. However, the huge computational cost has become the main obstacle of evidence theory on engineering applications. In this paper, an efficient uncertainty quantification (UQ) method based on dimension reduction decomposition is proposed to improve the applicability of evidence theory. In evidence-based UQ, the extremum analysis is required for each joint focal element, which generally can be achieved by collocating a large number of nodes. Through dimension reduction decomposition, the response of any point can be predicted by the responses of corresponding marginal collocation nodes. Thus, a marginal collocation node method is proposed to avoid the call of original performance function at all joint collocation nodes in extremum analysis. Based on this, a marginal interval analysis method is further developed to decompose the multidimensional extremum searches for all joint focal elements into the combination of a few one-dimensional extremum searches. Because it overcomes the combinatorial explosion of computation caused by dimension, this proposed method can significantly improve the computational efficiency for evidence-based UQ, especially for the high-dimensional uncertainty problems. In each one-dimensional extremum search, as the response at each marginal collocation node is actually calculated by using the original performance function, the proposed method can provide a relatively precise result by collocating marginal nodes even for some nonlinear functions. The accuracy and efficiency of the proposed method are demonstrated by three numerical examples and two engineering applications.

References

1.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
,
2001
, “
Mathematical Representation of Uncertainty
,”
19th AIAA Applied Aerodynamics Conference
,
Seattle, WA
, p.
1645
.
2.
Wei
,
D. L.
,
Cui
,
Z. S.
, and
Chen
,
J.
,
2008
, “
Uncertainty Quantification Using Polynomial Chaos Expansion With Points of Monomial Cubature Rules
,”
Comput. Struct.
,
86
(
23
), pp.
2102
2108
. 10.1016/j.compstruc.2008.07.001
3.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
. 10.1016/j.ress.2010.11.010
4.
Oberkampf
,
W.
, and
Helton
,
J. C.
,
2002
, “
Investigation of Evidence Theory for Engineering Applications
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
, p.
1569
.
5.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
,
2004
, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
281
294
. 10.1016/j.ress.2004.03.017
6.
Guo
,
S. S.
,
Wang
,
D.
, and
Liu
,
Z.
,
2015
, “
Probabilistic Analysis of Random Structural Intensity for Structural Members Under Stochastic Loadings
,”
Int. J. Comput. Methods
,
12
(
03
), p.
1550013
. 10.1142/S0219876215500139
7.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
. 10.1016/j.strusafe.2008.06.020
8.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
. 10.1016/j.ress.2006.10.021
9.
Mori
,
Y.
, and
Kato
,
T.
,
2003
, “
Multinormal Integrals by Importance Sampling for Series System Reliability
,”
Struct. Saf.
,
25
(
4
), pp.
363
378
. 10.1016/S0167-4730(03)00015-8
10.
Li
,
X.
,
Qiu
,
H.
,
Chen
,
Z.
,
Gao
,
L.
, and
Shao
,
X.
,
2016
, “
A Local Kriging Approximation Method Using MPP for Reliability-Based Design Optimization
,”
Comput. Struct.
,
162
(
Supplement C
), pp.
102
115
. 10.1016/j.compstruc.2015.09.004
11.
Klir
,
G.
, and
Wierman
,
M.
,
1999
,
Uncertainty-Based Information: Elements of Generalized Information Theory
,
Springer Science & Business Media
,
New York
.
12.
Devooght
,
J.
,
1998
, “
Model Uncertainty and Model Inaccuracy
,”
Reliab. Eng. Syst. Saf.
,
59
(
2
), pp.
171
185
. 10.1016/S0951-8320(97)00137-3
13.
Klir
,
G. J.
,
2004
, “
Generalized Information Theory: Aims, Results, and Open Problems
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
21
38
. 10.1016/j.ress.2004.03.003
14.
Luo
,
Y.
,
Kang
,
Z.
, and
Li
,
A.
,
2009
, “
Structural Reliability Assessment Based on Probability and Convex Set Mixed Model
,”
Comput. Struct.
,
87
(
21
), pp.
1408
1415
. 10.1016/j.compstruc.2009.06.001
15.
Wang
,
C.
,
Qiu
,
Z.
, and
He
,
Y.
,
2015
, “
Fuzzy Interval Perturbation Method for Uncertain Heat Conduction Problem With Interval and Fuzzy Parameters
,”
Int. J. Numer. Methods Eng.
,
104
(
5
), pp.
330
346
. 10.1002/nme.4932
16.
Troffaes
,
M. C. M.
,
Miranda
,
E.
, and
Destercke
,
S.
,
2013
, “
On the Connection Between Probability Boxes and Possibility Measures
,”
Inf. Sci.
,
224
, pp.
88
108
. 10.1016/j.ins.2012.09.033
17.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Oberkampf
,
W. L.
, and
Sallaberry
,
C. J.
,
2006
, “
Sensitivity Analysis in Conjunction With Evidence Theory Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1414
1434
. 10.1016/j.ress.2005.11.055
18.
Mourelatos
,
Z. P.
, and
Zhou
,
M. J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
1153
1161
. 10.1115/1.2204970
19.
Bae
,
H. R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
An Approximation Approach for Uncertainty Quantification Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
86
(
3
), pp.
215
225
. 10.1016/j.ress.2004.01.011
20.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Oberkampf
,
W. L.
, and
Storlie
,
C. B.
,
2007
, “
A Sampling-Based Computational Strategy for the Representation of Epistemic Uncertainty in Model Predictions With Evidence Theory
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
37–40
), pp.
3980
3998
. 10.1016/j.cma.2006.10.049
21.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
. 10.1016/j.ress.2004.03.025
22.
Riley
,
M. E.
,
2015
, “
Evidence-Based Quantification of Uncertainties Induced via Simulation-Based Modeling
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
79
86
. 10.1016/j.ress.2014.08.016
23.
Rao
,
S. S.
, and
Annamdas
,
K.
,
2013
, “
A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061006
. 10.1115/1.4024229
24.
Couso
,
I.
, and
Moral
,
S.
,
2010
, “
Independence Concepts in Evidence Theory
,”
Int. J. Approx. Reason.
,
51
(
7
), pp.
748
758
. 10.1016/j.ijar.2010.02.004
25.
Ferson
,
S.
,
Hajagos
,
J.
,
Berleant
,
D.
,
Zhang
,
J.
,
Tucker
,
W. T.
,
Ginzburg
,
L.
, and
Oberkampf
,
W. L.
,
2004
, “
Dependence in Probabilistic Modeling, Dempster-Shafer Theory, and Probability Bounds Analysis
,” Sandia National Laboratories, Report No. SAND2004-3072.
26.
Su
,
X.
,
Xu
,
P.
,
Mahadevan
,
S.
, and
Deng
,
Y.
,
2014
, “
On Consideration of Dependence and Reliability of Evidence in Dempster-Shafer Theory
,”
J. Inf. Comput. Sci.
,
11
(
14
), pp.
4901
4910
. 10.12733/jics20104475
27.
Jiang
,
C.
,
Zhang
,
W.
,
Wang
,
B.
, and
Han
,
X.
,
2014
, “
Structural Reliability Analysis Using a Copula-Function-Based Evidence Theory Model
,”
Comput. Struct.
,
143
, pp.
19
31
. 10.1016/j.compstruc.2014.07.007
28.
Zhang
,
Z.
,
Jiang
,
C.
,
Ruan
,
X. X.
, and
Guan
,
F. J.
,
2017
, “
A Novel Evidence Theory Model Dealing With Correlated Variables and the Corresponding Structural Reliability Analysis Method
,”
Struct. Multidiscip. Optim.
,
57
(
1–3
), pp.
1
16
. 10.1007/s00158-017-1843-9
29.
Gogu
,
C.
,
Qiu
,
Y.
,
Segonds
,
S. P.
, and
Bes
,
C.
,
2012
, “
Optimization Based Algorithms for Uncertainty Propagation Through Functions With Multidimensional Output Within Evidence Theory
,”
ASME J. Mech. Des.
,
134
(
10
), pp.
614
620
. 10.1115/1.4007393
30.
Du
,
X.
,
2008
, “
Uncertainty Analysis With Probability and Evidence Theories
,”
The 2006 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Philadelphia, PA
.
31.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
. 10.1115/1.2943295
32.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
. 10.1115/1.2204970
33.
Tang
,
H.
,
Su
,
Y.
, and
Wang
,
J.
,
2015
, “
Evidence Theory and Differential Evolution Based Uncertainty Quantification for Buckling Load of Semi-Rigid Jointed Frames
,”
Sadhana
,
40
(
5
), pp.
1611
1627
. 10.1007/s12046-015-0388-0
34.
Chen
,
N.
,
Yu
,
D.
, and
Xia
,
B.
,
2015
, “
Evidence-Theory-Based Analysis for the Prediction of Exterior Acoustic Field With Epistemic Uncertainties
,”
Eng. Anal. Boundary Elem.
,
50
, pp.
402
411
. 10.1016/j.enganabound.2014.09.014
35.
Xie
,
L.
,
Liu
,
J.
,
Zhang
,
J.
, and
Man
,
X.
,
2017
, “
Evidence-Theory-Based Analysis for Structural-Acoustic Field With Epistemic Uncertainties
,”
Int. J. Comput. Methods
,
14
(
2
), p.
1750012
. 10.1142/S0219876217500128
36.
Tang
,
H.
,
Li
,
D.
,
Li
,
J.
, and
Xue
,
S.
,
2017
, “
Epistemic Uncertainty Quantification in Metal Fatigue Crack Growth Analysis Using Evidence Theory
,”
Int. J. Fatigue
,
99
, pp.
163
174
. 10.1016/j.ijfatigue.2017.03.004
37.
Deng
,
L. X.
,
Tang
,
H. S.
,
Hu
,
C. Y.
, and
Xue
,
S. T.
,
2012
, “
Evidence Theory and Differential Evolution for Uncertainty Quantification of Structures
,”
Appl. Mech. Mater.
,
249–250
(
3
), pp.
1112
1118
. 10.4028/www.scientific.net/AMM.249-250.1112
38.
Cao
,
L.
,
Liu
,
J.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
Q.
,
2018
, “
An Efficient Evidence-Based Reliability Analysis Method via Piecewise Hyperplane Approximation of Limit State Function
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
201
213
. 10.1007/s00158-017-1889-8
39.
Bae
,
H. R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
Epistemic Uncertainty Quantification Techniques Including Evidence Theory for Large-Scale Structures
,”
Comput. Struct.
,
82
(
13–14
), pp.
1101
1112
. 10.1016/j.compstruc.2004.03.014
40.
Bai
,
Y. C.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
J.
,
2012
, “
Comparative Study of Metamodeling Techniques for Reliability Analysis Using Evidence Theory
,”
Adv. Eng. Software
,
53
, pp.
61
71
. 10.1016/j.advengsoft.2012.07.007
41.
Xiao
,
M.
,
Gao
,
L.
,
Xiong
,
H.
, and
Luo
,
Z.
,
2015
, “
An Efficient Method for Reliability Analysis Under Epistemic Uncertainty Based on Evidence Theory and Support Vector Regression
,”
J. Eng. Des.
,
26
(
10–12
), pp.
340
364
. 10.1080/09544828.2015.1057557
42.
Yang
,
X.
,
Liu
,
Y.
, and
Ma
,
P.
,
2017
, “
Structural Reliability Analysis Under Evidence Theory Using the Active Learning Kriging Model
,”
Eng. Optim.
,
49
(
11
), pp.
1922
1938
. 10.1080/0305215X.2016.1277063
43.
Zhang
,
Z.
,
Jiang
,
C.
,
Wang
,
G. G.
, and
Han
,
X.
,
2015
, “
First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
40
49
. 10.1016/j.ress.2014.12.011
44.
Shah
,
H.
,
Hosder
,
S.
, and
Winter
,
T.
,
2015
, “
A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions
,”
Int. J. Uncertainty Quantif.
,
5
(
1
), pp.
21
48
. 10.1615/Int.J.UncertaintyQuantification.2015010941
45.
Xu
,
H.
, and
Rahman
,
S.
,
2005
, “
Decomposition Methods for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
3
), pp.
239
250
. 10.1016/j.probengmech.2005.05.005
46.
Rahman
,
S.
,
2011
, “
Decomposition Methods for Structural Reliability Analysis Revisited
,”
Probab. Eng. Mech.
,
26
(
2
), pp.
357
363
. 10.1016/j.probengmech.2010.09.005
47.
Dong
,
W.
, and
Shah
,
H. C.
,
1987
, “
Vertex Method for Computing Functions of Fuzzy Variables
,”
Fuzzy Set. Syst.
,
24
(
1
), pp.
65
78
. 10.1016/0165-0114(87)90114-X
48.
Bai
,
Y. C.
,
Jiang
,
C.
,
Han
,
X.
, and
Hu
,
D. A.
,
2013
, “
Evidence-Theory-Based Structural Static and Dynamic Response Analysis Under Epistemic Uncertainties
,”
Finite Elem. Anal. Des.
,
68
, pp.
52
62
. 10.1016/j.finel.2013.01.007
49.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
. 10.1016/j.probengmech.2004.04.003
50.
Barfield
,
W.
, and
Caudell
,
T.
,
2001
, “
Basic Concepts in Wearable Computers and Augmented Reality
,”
Neurologia
,
10
(
suppl 1(2)
), pp.
312
313
.
You do not currently have access to this content.