Abstract

To solve challenging optimization problems with time-consuming objective and constraints, a novel efficient Kriging-based constrained optimization (EKCO) algorithm is proposed in this paper. The EKCO mainly consists of three sampling phases. In phase I of EKCO, considering the significance of constraints, feasible region is constructed via employing a feasible region sampling (FRS) criterion. The FRS criterion can avoid the local clustering phenomenon of sample points. Therefore, phase I is also a global sampling process for the objective function in the feasible region. However, the objective function may be higher-order nonlinear than constraints. In phase II, by maximizing the prediction variance of the surrogate objective, more accurate objective function in the feasible region can be obtained. After global sampling, to accelerate the convergence of EKCO, an objective local sampling criterion is introduced in phase III. The verification of the EKCO algorithm is examined on 18 benchmark problems by several recently published surrogate-based optimization algorithms. The results indicate that the sampling efficiency of EKCO is higher than or comparable with that of the recently published algorithms while maintaining the high accuracy of the optimal solution, and the adaptive ability of the proposed algorithm also be validated. To verify the ability of EKCO to solve practical engineering problems, an optimization design problem of aeronautical structure is presented. The result indicates EKCO can find a better feasible design than the initial design with limited sample points, which demonstrates practicality of EKCO.

References

1.
Cressie
,
N.
,
1988
, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geol.
,
20
(
4
), pp.
405
421
. 10.1007/BF00892986
2.
Seeger
,
M.
,
2004
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
,
14
(
2
), pp.
69
106
. 10.1142/S0129065704001899
3.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
,
1986
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions
,”
SIAM J. Sci. Stat. Comput.
,
7
(
2
), pp.
639
659
. 10.1137/0907043
4.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
. 10.1115/1.1897403
5.
Simpson
,
T. W.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
. 10.1007/PL00007198
6.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
. 10.1115/1.2429697
7.
Liu
,
H.
,
Ong
,
Y.-S.
, and
Cai
,
J.
,
2018
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
393
416
. 10.1007/s00158-017-1739-8
8.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
9.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plan. Infer.
,
26
(
2
), pp.
131
148
. 10.1016/0378-3758(90)90122-B
10.
Fang
,
K.-T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
. 10.1080/00401706.2000.10486045
11.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
12.
Gutmann
,
H.-M.
,
2001
, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
,
19
(
3
), pp.
201
227
. 10.1023/A:1011255519438
13.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
. 10.1007/s10898-005-2454-3
14.
Younis
,
A.
, and
Dong
,
Z.
,
2010
, “
Metamodelling and Search Using Space Exploration and Unimodal Region Elimination for Design Optimization
,”
Eng. Optim.
,
42
(
6
), pp.
517
533
. 10.1080/03052150903325540
15.
Liu
,
H.
,
Xu
,
S.
,
Ma
,
Y.
, and
Wang
,
X.
,
2015
, “
Global Optimization of Expensive Black Box Functions Using Potential Lipschitz Constants and Response Surfaces
,”
J. Global Optim.
,
63
(
2
), pp.
229
251
. 10.1007/s10898-015-0283-6
16.
Dong
,
H.
,
Song
,
B.
,
Dong
,
Z.
, and
Wang
,
P.
,
2016
, “
Multi-Start Space Reduction (MSSR) Surrogate-Based Global Optimization Method
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
907
926
. 10.1007/s00158-016-1450-1
17.
Zhou
,
Z.
, and
Bai
,
F.
,
2018
, “
An Adaptive Framework for Costly Black-Box Global Optimization Based on Radial Basis Function Interpolation
,”
J. Global Optim.
,
70
(
4
), pp.
757
781
. 10.1007/s10898-017-0599-5
18.
Schonlau
,
M.
,
1997
, “
Computer Experiments and Global Optimization
,”
Ph.D. thesis
,
University of Waterloo
.
19.
Sasena
,
M. J.
,
2002
, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,”
Ph.D. thesis
,
University of Michigan
.
20.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
201
221
. 10.1007/s00158-011-0745-5
21.
Regis
,
R. G.
,
2011
, “
Stochastic Radial Basis Function Algorithms for Large-Scale Optimization Involving Expensive Black-Box Objective and Constraint Functions
,”
Comput. Oper. Res.
,
38
(
5
), pp.
837
853
. 10.1016/j.cor.2010.09.013
22.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2007
, “
A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions
,”
INFORMS J. Comput.
,
19
(
4
), pp.
497
509
. 10.1287/ijoc.1060.0182
23.
Chung
,
I.-B.
,
Park
,
D.
, and
Choi
,
D.-H.
,
2018
, “
Surrogate-Based Global Optimization Using an Adaptive Switching Infill Sampling Criterion for Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1443
1459
. 10.1007/s00158-018-1942-2
24.
Dong
,
H.
,
Song
,
B.
,
Dong
,
Z.
, and
Wang
,
P.
,
2018
, “
SCGOSR: Surrogate-Based Constrained Global Optimization Using Space Reduction
,”
Appl. Soft Comput.
,
65
, pp.
462
477
. 10.1016/j.asoc.2018.01.041
25.
Regis
,
R. G.
,
2014
, “
Constrained Optimization by Radial Basis Function Interpolation for High-Dimensional Expensive Black-Box Problems With Infeasible Initial Points
,”
Eng. Optim.
,
46
(
2
), pp.
218
243
. 10.1080/0305215X.2013.765000
26.
Li
,
Y.
,
Wu
,
Y.
,
Zhao
,
J.
, and
Chen
,
L.
,
2017
, “
A Kriging-Based Constrained Global Optimization Algorithm for Expensive Black-Box Functions With Infeasible Initial Points
,”
J. Global Optim.
,
67
(
1–2
), pp.
343
366
. 10.1007/s10898-016-0455-z
27.
Müller
,
J.
, and
Woodbury
,
J. D.
,
2017
, “
GOSAC: Global Optimization With Surrogate Approximation of Constraints
,”
J. Global Optim.
,
69
(
1
), pp.
117
136
. 10.1007/s10898-017-0496-y
28.
Liu
,
H.
,
Xu
,
S.
,
Chen
,
X.
,
Wang
,
X.
, and
Ma
,
Q.
,
2017
, “
Constrained Global Optimization via a DIRECT-Type Constraint-Handling Technique and an Adaptive Metamodeling Strategy
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
155
177
. 10.1007/s00158-016-1482-6
29.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2019
, “
Filter-Based Sequential Radial Basis Function Method for Spacecraft Multidisciplinary Design Optimization
,”
AIAA J.
,
57
(
3
), pp.
1019
1031
. 10.2514/1.J057403
30.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Tang
,
Y.
,
2019
, “
Filter-Based Adaptive Kriging Method for Black-Box Optimization Problems With Expensive Objective and Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
782
805
. 10.1016/j.cma.2018.12.026
31.
Cheng
,
G. H.
,
Gjernes
,
T.
, and
Gary Wang
,
G.
,
2018
, “
An Adaptive Aggregation-Based Approach for Expensively Constrained Black-Box Optimization Problems
,”
ASME J. Mech. Des.
,
140
(
9
), pp.
091402
. 10.1115/1.4040485
32.
Haftka
,
R. T.
,
Villanueva
,
D.
, and
Chaudhuri
,
A. J. S.
,
2016
, “
Parallel Surrogate-Assisted Global Optimization With Expensive Functions—A Survey
,”
Struct. Multidiscip. Optim.
,
54
(
1
), pp.
3
13
. 10.1007/s00158-016-1432-3
33.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South. Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
34.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Global Optim.
,
33
(
1
), pp.
31
59
. 10.1007/s10898-004-6733-1
35.
Martin
,
J. D.
,
2009
, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Des.
,
131
(
8
), p.
084501
. 10.1115/1.3151807
36.
Chen
,
L.
,
Qiu
,
H.
,
Gao
,
L.
,
Jiang
,
C.
, and
Yang
,
Z.
,
2019
, “
A Screening-Based Gradient-Enhanced Kriging Modeling Method for High-Dimensional Problems
,”
Appl. Math. Modell.
,
69
, pp.
15
31
. 10.1016/j.apm.2018.11.048
37.
Arora
,
J. S.
,
2007
,
Optimization of Structural and Mechanical Systems
,
World Scientific
,
Singapore
.
38.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13
), pp.
1463
1476
. 10.1016/j.compstruc.2007.05.023
39.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
Aspects of the Matlab Toolbox DACE
,
Technical University of Denmark
,
Lyngby, Denmark
.
40.
Kleijnen
,
J. P. C.
,
Beers
,
W. V.
, and
Nieuwenhuyse
,
I. V.
,
2010
, “
Constrained Optimization in Expensive Simulation: Novel Approach
,”
Eur. J. Oper. Res.
,
202
(
1
), pp.
164
174
. 10.1016/j.ejor.2009.05.002
41.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-Validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
581
605
. 10.1007/s00158-013-0918-5
42.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2013
, “
Efficient Global Optimization Algorithm Assisted by Multiple Surrogate Techniques
,”
J. Global Optim.
,
56
(
2
), pp.
669
689
. 10.1007/s10898-012-9892-5
43.
Martínez-Frutos
,
J.
, and
Herrero-Pérez
,
D.
,
2016
, “
Kriging-Based Infill Sampling Criterion for Constraint Handling in Multi-Objective Optimization
,”
J. Global Optim.
,
64
(
1
), pp.
97
115
. 10.1007/s10898-015-0370-8
44.
Bellary
,
S. A. I.
,
Samad
,
A.
,
Couckuyt
,
I.
, and
Dhaene
,
T.
,
2016
, “
A Comparative Study of Kriging Variants for the Optimization of a Turbomachinery System
,”
Eng. Comput.
,
32
(
1
), pp.
49
59
. 10.1007/s00366-015-0398-x
45.
Kazemi
,
M.
,
Wang
,
G. G.
,
Rahnamayan
,
S.
, and
Gupta
,
K.
,
2011
, “
Metamodel-Based Optimization for Problems With Expensive Objective and Constraint Functions
,”
ASME J. Mech. Des.
,
133
(
1
), p.
014505
. 10.1115/1.4003035
46.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optim.
,
34
(
3
), pp.
263
278
. 10.1080/03052150211751
47.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
,
Simpson
,
T. W. J. S.
, and
Optimization
,
M.
,
2006
, “
Update Strategies for Kriging Models Used in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
287
298
. 10.1007/s00158-006-0025-y
48.
Wang
,
G. G.
,
2003
, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
210
220
. 10.1115/1.1561044
You do not currently have access to this content.