Abstract

This paper introduces the equations of motion of modular 2D snake robots moving in vertical plane employing Series Elastic Actuators (SEAs). The kinematics of such 2D modular snake robot is presented in an efficient matrix form and Euler–Lagrange equations are constructed to model the robot. Moreover, using a spring-damper contact model, external contact forces, necessary for modeling pedal wave motion (undulation in the vertical plane) are taken into account, which unlike existing methods can be used to model the effect of multiple contact points. Using such a contact model, pedal wave motion of the robot is simulated and the torque signal measured by the elastic element from the simulation and experimentation are used to show the validity of the model. Moreover, pedal wave locomotion of such robot on uneven terrain is also modeled and an adaptive controller based on torque feedback in gait parameter's space with optimized control gain is proposed. The simulation and experimentation results showed the efficacy of the proposed controller as the robot successfully climbed over a stair-type obstacle without any prior knowledge about its location with at least 24.8% higher speed compared with non-adaptive motion.

References

References
1.
Hirose
,
S.
,
1993
,
Biologically Inspired Robot
,
Oxford University Press
,
New York, NY
.
2.
Zarrouk
,
D.
, and
Shoham
,
M.
,
2012
, “
Analysis and Design of One Degree of Freedom Worm Robots for Locomotion on Rigid and Compliant Terrain
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021010
. 10.1115/1.4005656
3.
Yamada
,
H.
,
Takaoka
,
S.
, and
Hirose
,
S.
,
2013
, “
A Snake-Like Robot for Real-World Inspection Applications (the Design and Control of a Practical Active Cord Mechanism)
,”
Adv. Robot.
,
27
(
1
), pp.
47
60
. 10.1080/01691864.2013.752318
4.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2011
, “
Experimental Investigation of Obstacle-Aided Locomotion With a Snake Robot
,”
IEEE Trans. Robot.
,
27
(
4
), pp.
792
800
. 10.1109/TRO.2011.2134150
5.
Hu
,
D. L.
,
Nirody
,
J.
,
Scott
,
T.
, and
Shelley
,
M. J.
,
2009
, “
The Mechanics of Slithering Locomotion
,”
Proc. Natl. Acad. Sci.
,
106
(
25
), pp.
10081
10085
. 10.1073/pnas.0812533106
6.
Marvi
,
H.
,
Bridges
,
J.
, and
Hu
,
L. Hu.
,
2013
, “
Snakes Mimic Earthworms: Propulsion Using Rectilinear Travelling Waves
,”
J. R. Soc. Interface
,
10
(
84
), p.
20130188
. https://doi.org/10.1098/rsif.2013.0188
7.
Yamada
,
H.
, and
Hirose
,
S.
,
2010
, “
Steering of Pedal Wave of a Snake-Like Robot by Superposition of Curvatures
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
419
424
.
8.
Gart
,
S. W.
,
Mitchel
,
T. W.
, and
Li
,
C.
,
2019
, “
Snakes Partition Their Body to Traverse Large Steps Stably
,”
J. Exp. Biol.
,
222
(
8
), p.
185991
. 10.1242/jeb.185991
9.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2009
, “
A Survey of Snake-Inspired Robot Designs
,”
Bioinspir. Biomim.
,
4
(
2
), p.
21001
. 10.1088/1748-3182/4/2/021001
10.
Tanaka
,
M.
, and
Matsuno
,
F.
,
2014
, “
Control of Snake Robots With Switching Constraints: Trajectory Tracking With Moving Obstacle
,”
Adv. Robot.
,
28
(
6
), pp.
415
429
. 10.1080/01691864.2013.867285
11.
Pettersen
,
K. Y.
,
2017
, “
Snake Robots
,”
Annu. Rev. Control
,
44
(
1
), pp.
19
44
. 10.1016/j.arcontrol.2017.09.006
12.
Filippov
,
A. E.
, and
Gorb
,
S. N.
,
2016
, “
Modelling of the Frictional Behaviour of the Snake Skin Covered by Anisotropic Surface Nanostructures
,”
Sci. Rep.
,
6
, p.
23539
. 10.1038/srep23539
13.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2010
, “
Hybrid Modelling and Control of Obstacle-Aided Snake Robot Locomotion
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
781
799
. 10.1109/TRO.2010.2056211
14.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2008
, “
Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
88
104
. 10.1109/TRO.2007.914849
15.
Kano
,
T.
,
Sato
,
T.
,
Kobayashi
,
R.
, and
Ishiguro
,
A.
,
2012
, “
Local Reflexive Mechanisms Essential for Snakes’ Scaffold-Based Locomotion
,”
Bioinspir. Biomim.
,
7
(
4
), p.
46008
. 10.1088/1748-3182/7/4/046008
16.
Rollinson
,
D.
, and
Choset
,
H.
,
2016
, “
Pipe Network Locomotion With a Snake Robot
,”
J. Field Robot.
,
33
(
3
), pp.
322
336
. 10.1002/rob.21549
17.
Li
,
G.
,
Li
,
W.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2015
, “
Analysis and Design of Asymmetric Oscillation for Caterpillar-Like Locomotion
,”
J. Bionic Eng.
,
12
(
2
), pp.
190
203
. 10.1016/S1672-6529(14)60112-8
18.
Chen
,
L.
,
Ma
,
S.
,
Wang
,
Y.
,
Li
,
B.
, and
Duan
,
D.
,
2007
, “
Design and Modelling of a Snake Robot in Traveling Wave Locomotion
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1632
1642
. 10.1016/j.mechmachtheory.2006.12.003
19.
Akbarzadeh
,
A.
, and
Kalani
,
H.
,
2012
, “
Design and Modeling of a Snake Robot Based on Worm-Like Locomotion
,”
Adv. Robot.
,
26
(
5–6
), pp.
537
560
. 10.1163/156855311X617498
20.
Sato
,
T.
,
Kano
,
T.
, and
Ishiguro
,
A.
,
2012
, “
A Decentralized Control Scheme for an Effective Coordination of Phasic and Tonic Control in a Snake-Like Robot
,”
Bioinspir. Biomim.
,
7
(
1
), p.
016005
. 10.1088/1748-3182/7/1/016005
21.
Koopaee
,
M. J.
,
Pretty
,
C.
,
Classens
,
K.
, and
Chen
,
X.
,
2019
, “
Dynamical Modelling and Control of Snake-Like Motion in Vertical Plane for Locomotion in Unstructured Environments
,”
Proceedings of IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
, ASME Paper No. IDETC2019-97227.
22.
Koopaee
,
M. J.
,
Bal
,
S.
,
Pretty
,
C.
, and
Chen
,
X.
,
2019
, “
Design and Development of a Wheel-Less Snake Robot With Active Stiffness Control for Adaptive Pedal Wave Locomotion
,”
J. Bionic Eng.
,
16
(
4
), pp.
593
607
. 10.1007/s42235-019-0048-x
23.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
24.
Rollinson
,
D.
,
Bilgen
,
Y.
,
Brown
,
B.
,
Enner
,
F.
,
Ford
,
S.
,
Layton
,
C.
,
Rembisz
,
J.
,
Schwerin
,
M.
,
Willig
,
A.
,
Velagapudi
,
P.
, and
Choset
,
H.
,
2014
, “
Design and Architecture of a Series Elastic Snake Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
4630
4636
.
25.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2012
,
Snake Robots: Modelling, Mechatronics, and Control
,
Springer-Verlag
,
London, UK
.
26.
Liljebäck
,
P.
,
Stavdahl
,
Ø.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2012
, “
A Modular and Waterproof Snake Robot Joint Mechanism With a Novel Force/Torque Sensor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vila Moura, Portugal
,
Oct. 7–12
, pp.
4898
4905
.
27.
Takaoka
,
S.
,
Yamada
,
H.
, and
Hirose
,
S.
,
2011
, “
Snake-like Active Wheel Robot ACM-R4.1 With Joint Torque Sensor and Limiter
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1081
1086
.
28.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
,
IEEE Comput. Soc. Press
, pp.
399
406
.
29.
Travers
,
M.
,
Whitman
,
J.
, and
Choset
,
H.
,
2018
, “
Shape-Based Coordination in Locomotion Control
,”
Int. J. Robot. Res.
,
37
(
10
), pp.
1253
1268
. 10.1177/0278364918761569
30.
Bogert
,
C. M.
,
1947
, “
Rectilinear Locomotion in Snakes
,”
Copeia
,
1947
(
4
), pp.
253
254
. 10.2307/1438921
31.
Mosauer
,
W.
,
1930
, “
A Note on the Sidewinding Locomotion of Snakes
,”
Am. Nat.
,
64
(
691
), pp.
179
183
. 10.1086/280308
32.
Kano
,
T.
,
Watanabe
,
Y.
,
Satake
,
F.
, and
Ishiguro
,
A.
,
2014
, “
Decentralized-Controlled Multi-Terrain Robot Inspired by Flatworm Locomotion
,”
Adv. Robot.
,
28
(
7
), pp.
523
531
. 10.1080/01691864.2013.878667
33.
Mosauer
,
W.
,
1932
, “
On the Locomotion of Snakes
,”
Science
,
76
(
1982
), pp.
583
585
. 10.1126/science.76.1982.583
34.
Mohammadi
,
A.
,
Rezapour
,
E.
,
Maggiore
,
M.
, and
Pettersen
,
K. Y.
,
2016
, “
Maneuvering Control of Planar Snake Robots Using Virtual Holonomic Constraints
,”
IEEE Trans. Control Syst. Technol.
,
24
(
3
), pp.
884
899
. 10.1109/TCST.2015.2467208
35.
Kandhari
,
A.
,
Huang
,
Y.
,
Daltorio
,
K. A.
,
Chiel
,
H. J.
, and
Quinn
,
R. D.
,
2018
, “
Body Stiffness in Orthogonal Directions Oppositely Affects Worm-Like Robot Turning and Straight-Line Locomotion
,”
Bioinspir. Biomim.
,
13
(
2
), p.
026003
. 10.1088/1748-3190/aaa342
36.
De Luca
,
A.
, and
Book
,
W.
,
2008
, “Robots With Flexible Elements,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer-Verlag
,
Heidelberg, Germany
, pp.
287
319
.
37.
Nicosia
,
S.
, and
Tomei
,
P.
,
1991
, “
A PD Control Law for Trajectory Tracking of Flexible Joint Robots
,”
IFAC Proc.
,
24
(
9
), pp.
357
362
. 10.1016/S1474-6670(17)51082-4
38.
Calanca
,
A.
,
Muradore
,
R.
, and
Fiorini
,
P.
,
2017
, “
Impedance Control of Series Elastic Actuators: Passivity and Acceleration-Based Control
,”
Mechatronics
,
47
(
1
), pp.
37
48
. 10.1016/j.mechatronics.2017.08.010
39.
Kim
,
Y. J.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
2017
, “Collision Detection,”
Humanoid Robotics: A Reference
,
Springer
,
Dordrecht, Netherlands
, pp.
1
24
.
40.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point
,”
IEEE Trans. Syst. Man Cybern. A: Syst. Hum.
,
34
(
5
), pp.
630
637
. 10.1109/TSMCA.2004.832811
41.
Tesch
,
M.
,
Schneider
,
J.
, and
Choset
,
H.
,
2011
, “
Using Response Surfaces and Expected Improvement to Optimize Snake Robot Gait Parameters
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
1069
1074
.
You do not currently have access to this content.