Abstract

Three-dimensional printing systems have expanded the access to low cost, rapid methods for attaining physical prototypes or products. However, a cyber attack, system error, or operator error on a 3D-printing system may result in catastrophic situations, ranging from complete product failure, to small types of defects which weaken the structural integrity of the product. Such defects can be introduced early-on via solid models or through G-codes for printer movements at a later stage. Previous works have studied the use of image classifiers to predict defects in real-time and offline. However, a major restriction in the functionality of these methods is the availability of a dataset capturing diverse attacks on printed entities or the printing process. This paper introduces an image processing technique that analyzes the amplitude and phase variations of the print head platform arising through induced system manipulations. The method uses an image sequence of the printing process to perform an offline spatio-temporal video decomposition to amplify changes attributable to a change in system parameters. The authors hypothesize that a change in the amplitude envelope and instantaneous phase response as a result of a change in the end-effector translational instructions to be correlated with an AM system compromise. Two case studies are presented, one verifies the hypothesis with statistical evidence in support of the method while the other studies the effectiveness of a conventional tensile test to identify system compromise. The method has the potential to enhance the robustness of cyber-physical systems such as 3D printers.

References

1.
Langner
,
R.
,
2011
, “
Stuxnet: Dissecting a Cyberwarfare Weapon
,”
IEEE Secur. Priv.
,
9
(
3
), pp.
49
51
. 10.1109/MSP.2011.67
2.
Owolabi
,
G. M.
,
Swamidas
,
A. S. J.
, and
Seshadri
,
R.
,
2003
, “
Crack Detection in Beams Using Changes in Frequencies and Amplitudes of Frequency Response Functions
,”
J. Sound. Vib.
,
265
(
1
), pp.
1
22
. 10.1016/S0022-460X(02)01264-6
3.
Delli
,
U.
, and
Chang
,
S.
,
2018
, “
Automated Process Monitoring in 3D Printing Using Supervised Machine Learning
,”
Proc. Manuf.
,
26
, pp.
865
870
. 10.1016/j.promfg.2018.07.111
4.
Gobert
,
C.
,
Reutzel
,
E. W.
,
Petrich
,
J.
,
Nassar
,
A. R.
, and
Phoha
,
S.
,
2018
, “
Application of Supervised Machine Learning for Defect Detection During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging
,”
Addit. Manuf.
,
21
, pp.
517
528
. 10.1016/j.addma.2018.04.005
5.
Wu
,
H.-Y.
,
Rubinstein
,
M.
,
Shih
,
E.
,
Guttag
,
J.
,
Durand
,
F.
, and
Freeman
,
W.
,
2012
, “
Eulerian Video Magnification for Revealing Subtle Changes in the World
,”
ACM Trans. Graph.
,
31
(
4
), pp.
1
8
. 10.1145/2185520.2185561
6.
Prakash
,
S. K. A.
, and
Tucker
,
C. S.
,
2018
, “
Bounded Kalman Filter Method for Motion-Robust, Non-Contact Heart Rate Estimation
,”
Biomed. Opt. Express
,
9
(
2
), pp.
873
897
. 10.1364/BOE.9.000873
7.
Benetazzo
,
F.
,
Freddi
,
A.
,
Monteriù
,
A.
, and
Longhi
,
S.
,
2014
, “
Respiratory Rate Detection Algorithm Based on RGB-D Camera: Theoretical Background and Experimental Results
,”
Healthc. Technol. Lett.
,
1
(
3
), pp.
81
86
. 10.1049/htl.2014.0063
8.
Wu
,
D.
,
Terpenny
,
J.
, and
Schaefer
,
D.
,
2017
, “
Digital Design and Manufacturing on the Cloud: A Review of Software and Services
,”
AI EDAM
,
31
(
1
), pp.
104
118
. 10.1017/s0890060416000305
9.
Turner
,
H.
,
White
,
J.
,
Camelio
,
J. A.
,
Williams
,
C.
,
Amos
,
B.
, and
Parker
,
R.
,
2015
, “
Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks?
IEEE Secur. Priv.
,
13
(
3
), pp.
40
47
. 10.1109/MSP.2015.60
10.
Moore
,
S.
,
Armstrong
,
P.
,
McDonald
,
T.
, and
Yampolskiy
,
M.
,
2016
, “
Vulnerability Analysis of Desktop 3D Printer Software
,”
2016 Resilience Week (RWS)
,
IEEE
, pp.
46
51
.
11.
Liu
,
X. F.
,
Shahriar
,
M. R.
,
Al Sunny
,
S. M. N.
,
Leu
,
M. C.
,
Cheng
,
M.
, and
Hu
,
L.
,
2016
, “
Design and Implementation of Cyber-Physical Manufacturing Cloud using MTConnect
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
V01BT02A019
.
12.
Armstrong
,
A. P.
,
Barclift
,
M.
, and
Simpson
,
T. W.
,
2017
, “
Development of CAD-Integrated Cost Estimator to Support Design for Additive Manufacturing
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
V001T02A034
.
13.
Tupa
,
J.
,
Simota
,
J.
, and
Steiner
,
F.
,
2017
, “
Aspects of Risk Management Implementation for Industry 4.0
,”
Procedia Manuf.
,
11
, pp.
1223
1230
. 10.1016/j.promfg.2017.07.248
14.
Peterson
,
D.
,
2013
, “
Offensive Cyber Weapons: Construction, Development, and Employment
,”
J. Strateg. Stud.
,
36
(
1
), pp.
120
124
. 10.1080/01402390.2012.742014
15.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
, pp.
43
56
. 10.1016/j.ijpe.2015.02.020
16.
Do
,
Q.
,
Martini
,
B.
, and
Choo
,
K.-K. R.
,
2016
, “
A Data Exfiltration and Remote Exploitation Attack on Consumer 3D Printers
,”
IEEE Trans. Inf. Forensics Secur.
,
11
(
10
), pp.
2174
2186
. 10.1109/TIFS.2016.2578285
17.
Faruque
,
A.
,
Abdullah
,
M.
,
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Wan
,
J.
,
2016
, “
Acoustic Side-Channel Attacks on Additive Manufacturing Systems
,”
Proceedings of the 7th International Conference on Cyber-Physical Systems
,
IEEE Press
, p.
19
.
18.
Song
,
C.
,
Lin
,
F.
,
Ba
,
Z.
,
Ren
,
K.
,
Zhou
,
C.
, and
Xu
,
W.
,
2016
, “
My Smartphone Knows What you Print: Exploring Smartphone-Based Side-Channel Attacks Against 3d Printers
,”
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
,
ACM
, pp.
895
907
.
19.
Farwell
,
J. P.
, and
Rohozinski
,
R.
,
2011
, “
Stuxnet and the Future of Cyber War
,”
Survival
,
53
(
1
), pp.
23
40
. 10.1080/00396338.2011.555586
20.
Wu
,
M.
,
Song
,
Z.
, and
Moon
,
Y. B.
,
2017
, “
Detecting Cyber-Physical Attacks in CyberManufacturing Systems With Machine Learning Methods
,”
J. Intell. Manuf.
,
30
(
3
), pp.
1111
1123
. 10.1007/s10845-017-1315-5
21.
Chen
,
F.
,
Mac
,
G.
, and
Gupta
,
N.
,
2017
, “
Security Features Embedded in Computer Aided Design (CAD) Solid Models for Additive Manufacturing
,”
Mater. Design
,
128
, pp.
182
194
. 10.1016/j.matdes.2017.04.078
22.
Gupta
,
N.
,
Chen
,
F.
,
Tsoutsos
,
N. G.
, and
Maniatakos
,
M.
,
2017
, “
ObfusCADe: Obfuscating Additive Manufacturing Cad Models Against Counterfeiting
,”
Proceedings of the 54th Annual Design Automation Conference 2017
,
ACM
, p.
82
.
23.
Fadhel
,
N. F.
,
Crowder
,
R. M.
, and
Wills
,
G. B.
,
2013
, “
Approaches to Maintaining Provenance Throughout the Additive Manufacturing Process
,”
World Congress on Internet Security (WorldCIS-2013)
,
IEEE
, pp.
82
87
.
24.
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Faruque
,
M. A. A.
,
2018
, “
Confidentiality Breach Through Acoustic Side-Channel in Cyber-Physical Additive Manufacturing Systems
,”
ACM Trans. Cyber-Phys. Syst.
,
2
(
1
), p.
3
. 10.1145/3078622
25.
Chhetri
,
S. R.
,
Faezi
,
S.
,
Canedo
,
A.
, and
Al Faruque
,
M. A.
,
2016
, “
Poster Abstract: Thermal Side-Channel Forensics in Additive Manufacturing Systems
,”
Proceedings of the 7th International Conference on Cyber-Physical Systems
,
Vienna, Austria
,
Apr. 11–14
.
26.
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Faruque
,
M. A. A.
,
2016
, “
Kcad: Kinetic Cyber-Attack Detection Method for Cyber-Physical Additive Manufacturing Systems
,”
Proceedings of the 35th International Conference on Computer-Aided Design
,
Austin, TX
,
Nov. 7–10
,
ACM
, p.
74
.
27.
Belikovetsky
,
S.
,
Yampolskiy
,
M.
,
Toh
,
J.
,
Gatlin
,
J.
, and
Elovici
,
Y.
,
2017
, “
dr0wned–Cyber-Physical Attack with Additive Manufacturing
,”
11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17)
,
Vancouver, BC, Canada
,
Aug. 14–15
.
28.
Sturm
,
L. D.
,
Williams
,
C. B.
,
Camelio
,
J. A.
,
White
,
J.
, and
Parker
,
R.
,
2017
, “
Cyber-Physical Vulnerabilities in Additive Manufacturing Systems: A Case Study Attack on the .STL File With Human Subjects
,”
J. Manuf. Syst.
,
44
, pp.
154
164
. 10.1016/j.jmsy.2017.05.007
29.
Rengier
,
F.
,
Mehndiratta
,
A.
,
Von Tengg-Kobligk
,
H.
,
Zechmann
,
C. M.
,
Unterhinninghofen
,
R.
,
Kauczor
,
H.-U.
, and
Giesel
,
F. L.
,
2010
, “
3D Printing Based on Imaging Data: Review of Medical Applications
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
4
), pp.
335
341
. 10.1007/s11548-010-0476-x
30.
Phan
,
K.
,
Sgro
,
A.
,
Maharaj
,
M. M.
,
D’Urso
,
P.
, and
Mobbs
,
R. J.
,
2016
, “
Application of a 3D Custom Printed Patient Specific Spinal Implant for C1/2 Arthrodesis
,”
J. Spine Surg.
,
2
(
4
), p.
314
. 10.21037/jss.2016.12.06
31.
Joshi
,
S. C.
, and
Sheikh
,
A. A.
,
2015
, “
3D Printing in Aerospace and Its Long-Term Sustainability
,”
Virtual Phys. Prototy.
,
10
(
4
), pp.
175
185
. 10.1080/17452759.2015.1111519
32.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
33.
Günaydın
,
K.
, and
Türkmen
,
H. S.
,
2018
, “
Common FDM 3D Printing Defects
”.
34.
Carneiro
,
O. S.
,
Silva
,
A. F.
, and
Gomes
,
R.
,
2015
, “
Fused Deposition Modeling With Polypropylene
,”
Mater. Design
,
83
, pp.
768
776
. 10.1016/j.matdes.2015.06.053
35.
Polak
,
R.
,
Sedláček
,
F.
, and
Raz
,
K.
,
2017
, “
Determination of FDM Printer Settings With Regard to Geometrical Accuracy
,”
Proceedings of the 28th DAAAM International Symposium
, pp.
561
566
.
36.
Baumann
,
F.
, and
Roller
,
D.
,
2016
, “
Vision Based Error Detection for 3D Printing Processes
,”
MATEC Web of Conferences
, Vol.
59
,
EDP Sciences
, p.
6003
.
37.
Bibb
,
R.
,
Thompson
,
D.
, and
Winder
,
J.
,
2011
, “
Computed Tomography Characterisation of Additive Manufacturing Materials
,”
Med. Eng. Phys.
,
33
(
5
), pp.
590
596
. 10.1016/j.medengphy.2010.12.015
38.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-Ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
), p.
72001
. 10.1088/0957-0233/27/7/072001
39.
du Plessis
,
A.
,
le Roux
,
S. G.
,
Booysen
,
G.
, and
Els
,
J.
,
2016
, “
Quality Control of a Laser Additive Manufactured Medical Implant by X-Ray Tomography
,”
3D Print. Addit. Manuf.
,
3
(
3
), pp.
175
182
. 10.1089/3dp.2016.0012
40.
Everton
,
S.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Dutton
,
B.
,
2015
, “
Evaluation of Laser Ultrasonic Testing for Inspection of Metal Additive Manufacturing
,”
Laser 3D Manufacturing Ii
, Vol.
9353
,
International Society for Optics and Photonics
, p.
935316
.
41.
Lopez
,
A.
,
Bacelar
,
R.
,
Pires
,
I.
,
Santos
,
T. G.
,
Sousa
,
J. P.
, and
Quintino
,
L.
,
2018
, “
Non-Destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
298
306
. 10.1016/j.addma.2018.03.020
42.
Albakri
,
M.
,
Sturm
,
L.
,
Williams
,
C. B.
, and
Tarazaga
,
P.
,
2015
, “
Non-Destructive Evaluation of Additively Manufactured Parts via Impedance-Based Monitoring
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
, pp.
1475
1490
.
43.
Tenney
,
C.
,
Albakri
,
M. I.
,
Kubalak
,
J.
,
Sturm
,
L. D.
,
Williams
,
C. B.
, and
Tarazaga
,
P. A.
,
2017
, “
Internal Porosity Detection in Additively Manufactured Parts via Electromechanical Impedance Measurements
,”
ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 18–20
.
44.
Rao
,
P. K.
,
Liu
,
J. P.
,
Roberson
,
D.
,
Kong
,
Z. J.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
. 10.1115/1.4029823
45.
Wu
,
H.
,
Wang
,
Y.
, and
Yu
,
Z.
,
2016
, “
In Situ Monitoring of FDM Machine Condition Via Acoustic Emission
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1483
1495
. 10.1007/s00170-015-7809-4
46.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Design
,
95
, pp.
431
445
. 10.1016/j.matdes.2016.01.099
47.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and in Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
44005
. 10.1088/1361-6501/aa5c4f
48.
Zeltmann
,
S. E.
,
Gupta
,
N.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Rajendran
,
J.
, and
Karri
,
R.
,
2016
, “
Manufacturing and Security Challenges in 3D Printing
,”
JOM
,
68
(
7
), pp.
1872
1881
. 10.1007/s11837-016-1937-7
49.
Rowe
,
B. R.
, and
Gallaher
,
M. P.
,
2006
, “
Private Sector Cyber Security Investment Strategies: An Empirical Analysis
,”
The Fifth Workshop on the Economics of Information Security (WEIS06)
.
50.
Fielder
,
A.
,
Panaousis
,
E.
,
Malacaria
,
P.
,
Hankin
,
C.
, and
Smeraldi
,
F.
,
2016
, “
Decision Support Approaches for Cyber Security Investment
,”
Decis. Support Syst.
,
86
, pp.
13
23
. 10.1016/j.dss.2016.02.012
51.
Wu
,
D.
,
Ren
,
A.
,
Zhang
,
W.
,
Fan
,
F.
,
Liu
,
P.
,
Fu
,
X.
, and
Terpenny
,
J.
,
2018
, “
Cybersecurity for Digital Manufacturing
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
3
12
. 10.1016/j.jmsy.2018.03.006
52.
Kudva
,
J. N.
,
Marantidis
,
C.
,
Gentry
,
J. D.
, and
Blazic
,
E.
,
1993
, “
Smart Structures Concepts for Aircraft Structural Health Monitoring
,”
Smart Structures and Materials 1993: Smart Structures and Intelligent Systems
, Vol.
1917
,
International Society for Optics and Photonics
, pp.
964
971
.
53.
Van Way
,
C. B.
,
Kudva
,
J. N.
,
Schoess
,
J. N.
,
Zeigler
,
M. L.
, and
Alper
,
J. M.
,
1995
, “
Aircraft Structural Health Monitoring System Development: Overview of the Air Force/Navy Smart Metallic Structures Program
,”
Smart Structures and Materials 1995: Smart Structures and Integrated Systems
, Vol.
2443
,
International Society for Optics and Photonics
, pp.
277
285
.
54.
Lin
,
X.
, and
Yuan
,
F. G.
,
2001
, “
Damage Detection of a Plate Using Migration Technique
,”
J. Intell. Mater. Syst. Struct.
,
12
(
7
), pp.
469
482
. 10.1177/10453890122145276
55.
Gupta
,
A.
, and
Lawsirirat
,
C.
,
2006
, “
Strategically Optimum Maintenance of Monitoring-Enabled Multi-Component Systems Using Continuous-Time Jump Deterioration Models
,”
J. Qual. Maintenance Eng.
,
12
(
3
), pp.
306
329
. 10.1108/13552510610685138
56.
Goyal
,
D.
, and
Pabla
,
B. S.
,
2015
, “
Condition Based Maintenance of Machine Tools–A Review
,”
CIRP. J. Manuf. Sci. Technol.
,
10
, pp.
24
35
. 10.1016/j.cirpj.2015.05.004
57.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Digest
,
30
(
2
), pp.
91
105
. 10.1177/058310249803000201
58.
Sarrafi
,
A.
, and
Mao
,
Z.
,
2019
, “
Using 2D Phase-Based Motion Estimation and Video Magnification for Binary Damage Identification on a Wind Turbine Blade
,”
Model Validation and Uncertainty Quantification
, Vol.
3
.
Springer
, pp.
145
151
.
59.
Wadhwa
,
N.
,
Rubinstein
,
M.
,
Durand
,
F.
, and
Freeman
,
W. T.
,
2013
, “
Phase-Based Video Motion Processing
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), p.
80
. 10.1145/2461912.2461966
60.
Fleet
,
D. J.
, and
Jepson
,
A. D.
,
1990
, “
Computation of Component Image Velocity From Local Phase Information
,”
Int. J. Comput. Vis.
,
5
(
1
), pp.
77
104
. 10.1007/BF00056772
61.
Choi
,
A. J.
, and
Han
,
J. -H.
,
2018
, “
Frequency-Based Damage Detection in Cantilever Beam Using Vision-Based Monitoring System with Motion Magnification Technique
,”
J. Intell. Mater. Syst. Struct.
,
29
(
20
), pp.
3923
3936
. 10.1177/1045389X18799961
62.
Yang
,
Y.
,
Dorn
,
C.
,
Mancini
,
T.
,
Talken
,
Z.
,
Theiler
,
J.
,
Kenyon
,
G.
,
Farrar
,
C.
, and
Mascarenas
,
D.
,
2018
, “
Reference-Free Detection of Minute, Non-Visible, Damage Using Full-Field, High-Resolution Mode Shapes Output-Only Identified From Digital Videos of Structures
,”
Struct. Health. Monit.
,
17
(
3
), pp.
514
531
. 10.1177/1475921717704385
63.
Yang
,
Y.
,
Dorn
,
C.
,
Mancini
,
T.
,
Talken
,
Z.
,
Kenyon
,
G.
,
Farrar
,
C.
, and
Mascare nas
,
D.
,
2017
, “
Blind Identification of Full-Field Vibration Modes From Video Measurements with Phase-Based Video Motion Magnification
,”
Mech. Syst. Signal Process.
,
85
, pp.
567
590
. 10.1016/j.ymssp.2016.08.041
64.
Chen
,
J. G.
,
Wadhwa
,
N.
,
Cha
,
Y. -J.
,
Durand
,
F.
,
Freeman
,
W. T.
, and
Buyukozturk
,
O.
,
2015
, “
Modal Identification of Simple Structures with High-Speed Video Using Motion Magnification
,”
J. Sound. Vib.
,
345
, pp.
58
71
. 10.1016/j.jsv.2015.01.024
65.
Holzmond
,
O.
, and
Li
,
X.
,
2017
, “
In Situ Real Time Defect Detection of 3D Printed Parts
,”
Addit. Manuf.
,
17
, pp.
135
142
. 10.1016/j.addma.2017.08.003
66.
Straub
,
J.
,
2017
, “
Identifying Positioning-Based Attacks Against 3D Printed Objects and the 3D Printing Process
,”
Pattern Recognition and Tracking XXVIII
, Vol.
10203
,
International Society for Optics and Photonics
, p.
1020304
.
67.
Smith
,
J. O.
,
2007
,
Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications
, 2nd ed.,
W3K Publishing
, http://www.w3k.org/books/.
68.
Gautama
,
T.
, and
Van Hulle
,
M. A.
,
2002
, “
A Phase-Based Approach to the Estimation of the Optical Flow Field Using Spatial Filtering
,”
IEEE Trans. Neural Netw.
,
13
(
5
), pp.
1127
1136
. 10.1109/TNN.2002.1031944
69.
Liu
,
C.
,
Torralba
,
A.
,
Freeman
,
W. T.
,
Durand
,
F.
, and
Adelson
,
E. H.
,
2005
, “
Motion Magnification
,”
ACM Trans. Graphics
,
24
(
3
), pp.
519
526
. 10.1145/1073204.1073223
70.
ASTM International
,
2015
,
ASTM D638-14, Standard Test Method for Tensile Properties of Plastics
,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.