Abstract

In vehicle collision accidents, an occupant restraint system (ORS) is crucial to protect the human body from injury, and it commonly involves a large number of design parameters. However, it is very difficult to quantify the importance of design parameters and determine them in the ORS design process. Therefore, an approach of the combination of the proposed approximate sensitivity analysis (SA) method and the interval multi-objective optimization design is presented to reduce craniocerebral injury and improve ORS protection performance. First, to simulate the vehicle collision process and obtain the craniocerebral injury responses, the integrated finite element model of vehicle-occupant (IFEM-VO) is established by integrating the vehicle, dummy, seatbelt, airbag, etc. Then, the proposed approximate SA method is used to quantify the importance ranking of design parameters and ignore the effects of some nonessential parameters. In the SA process, the Kriging metamodel characterizing the relationships between design parameters and injury responses is fitted to overcome the time-consuming disadvantage of IFEM-VO. Finally, according to the results of SA, considering the influence of uncertainty, an interval multi-objective optimization design is implemented by treating the brain injury criteria (BRIC, BrIC) as the objectives and regarding the head injury criterion (HIC) and the rotational injury criterion (RIC) as the constraints. Comparison of the results before and after optimization indicates that the maximum values of the translational and rotational accelerations are greatly reduced, and the ORS protection performance is significantly improved. This study provides an effective way to improve the protection performance of vehicle ORS under uncertainty.

References

1.
World Health Organization
,
2018
, “
Global Status Report on Road Safety 2018
,” https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
2.
Liu
,
Q.
,
Liu
,
J.
,
Wu
,
X.
,
Han
,
X.
,
Cao
,
L.
, and
Guan
,
F.
,
2019
, “
An Inverse Reconstruction Approach Considering Uncertainty and Correlation for Vehicle–Vehicle Collision Accidents
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
681
698
. 10.1007/s00158-019-02231-9
3.
Gu
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Huang
,
X.
,
Li
,
Y.
, and
Li
,
Q.
,
2013
, “
Multiobjective Optimization Design for Vehicle Occupant Restraint System Under Frontal Impact
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
465
477
. 10.1007/s00158-012-0811-7
4.
Gabauer
,
D. J.
, and
Gabler
,
H. C.
,
2010
, “
The Effects of Airbags and Seatbelts on Occupant Injury in Longitudinal Barrier Crashes
,”
J. Saf. Res.
,
41
(
1
), pp.
9
15
. 10.1016/j.jsr.2009.10.006
5.
Houston
,
D. J.
, and
Richardson
,
L. E.
, Jr.
,
2002
, “
Traffic Safety and the Switch to a Primary Seat Belt Law: The California Experience
,”
Accid. Anal. Prev.
,
34
(
6
), pp.
743
751
. 10.1016/S0001-4575(01)00074-4
6.
Decina
,
L. E.
, and
Lococo
,
K. H.
,
2005
, “
Child Restraint System Use and Misuse in Six States
,”
Accid. Anal. Prev.
,
37
(
3
), pp.
583
590
. 10.1016/j.aap.2005.01.006
7.
Zhang
,
J. Y.
,
Zhang
,
M.
,
Ding
,
R. F.
,
Qiu
,
S. B.
,
Zhang
,
Y.
, and
Li
,
H. J.
,
2006
, “
Key Techniques of Multi-Body Modeling of Occupant Restraint System of Vehicle Side Impact
,”
Chin. J. Mech. Eng.
,
19
(
3
), pp.
396
400
. 10.3901/CJME.2006.03.396
8.
Sahraei
,
E.
,
Digges
,
K. H.
, and
Marzougui
,
D.
,
2013
, “
Effects of Vehicle Front-End Stiffness on Rear Seat Dummies in NCAP and FMVSS208 Tests
,”
Traffic Inj. Prev.
,
14
(
6
), pp.
602
606
. 10.1080/15389588.2012.742516
9.
Ye
,
X.
,
Poplin
,
G. S.
,
Bose
,
D.
,
Forbes
,
A.
,
Hurwitz
,
S. R.
,
Shaw
,
G.
, and
Crandall
,
J. R.
,
2015
, “
Analysis of Crash Parameters and Driver Characteristics Associated With Lower Limb Injury
,”
Accid. Anal. Prev.
,
83
(
Oct.
), pp.
37
46
. 10.1016/j.aap.2015.06.013
10.
Umale
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Arun
,
M. W.
,
2018
, “
Factors Influencing the Effectiveness of Occupant Retention Under Far-Side Impacts: A Parametric Study
,”
J. Mech. Behav. Biomed.
,
84
(
Aug
.), pp.
235
248
. 10.1016/j.jmbbm.2018.05.021
11.
Pal
,
C.
,
Tomosaburo
,
O.
,
Vimalathithan
,
K.
,
Jeyabharath
,
M.
,
Muthukumar
,
M.
,
Satheesh
,
N.
, and
Narahari
,
S.
,
2014
, “
Effect of Weight, Height and BMI on Injury Outcome in Side Impact Crashes Without Airbag Deployment
,”
Accid. Anal. Prev.
,
72
(
Nov.
), pp.
193
209
. 10.1016/j.aap.2014.06.020
12.
Zhang
,
J. Y.
,
Lin
,
Y.
, and
Zhang
,
M.
,
2013
, “
Parameter Sensitivity Analysis for Vehicle Occupant Restraint System Based on Non-Parameter Statistics
,”
Autom. Eng.
,
26
(
4
), pp.
443
445
.
13.
Bose
,
D.
,
Crandall
,
J. R.
,
Untaroiu
,
C. D.
, and
Maslen
,
E. H.
,
2010
, “
Influence of Pre-Collision Occupant Parameters on Injury Outcome in a Frontal Collision
,”
Accid. Anal. Prev.
,
42
(
4
), pp.
1398
1407
. 10.1016/j.aap.2010.03.004
14.
Luo
,
M.
, and
Zhang
,
Q.
,
2010
, “
A Vehicle Seat Design Concept for Reducing Whiplash Injury Risk in Low-Speed Rear Impact
,”
Int. J. Crashworthiness
,
15
(
3
), pp.
293
311
. 10.1080/13588260903335282
15.
Deng
,
X.
,
Potula
,
S.
,
Grewal
,
H.
,
Solanki
,
K. N.
,
Tschopp
,
M. A.
, and
Horstemeyer
,
M. F.
,
2013
, “
Finite Element Analysis of Occupant Head Injuries: Parametric Effects of the Side Curtain Airbag Deployment Interaction With a Dummy Head in a Side Impact Crash
,”
Accid. Anal. Prev.
,
55
(
June
), pp.
232
241
. 10.1016/j.aap.2013.03.016
16.
Zaseck
,
L. W.
,
Orton
,
N. R.
,
Gruber
,
R.
,
Rupp
,
J.
,
Scherer
,
R.
,
Reed
,
M.
, and
Hu
,
J.
,
2017
, “
The Influence of Personal Protection Equipment, Occupant Body Size, and Restraint System on the Frontal Impact Responses of Hybrid III ATDs in Tactical Vehicles
,”
Traffic Inj. Prev.
,
18
(
6
), pp.
642
649
. 10.1080/15389588.2017.1282156
17.
Sobol
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
187
193
. 10.1016/S0951-8320(02)00229-6
18.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
J. Mech. Des.
,
127
(
5
), pp.
875
886
. 10.1115/1.1904642
19.
Liu
,
Q.
,
Li
,
Y.
,
Cao
,
L.
,
Lei
,
F.
, and
Wang
,
Q.
,
2018
, “
Structural Design and Global Sensitivity Analysis of the Composite B-Pillar With Ply Drop-Off
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
965
975
. 10.1007/s00158-017-1788-z
20.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
. 10.1016/0951-8320(96)00002-6
21.
Melchers
,
R. E.
, and
Ahammed
,
M.
,
2004
, “
A Fast Approximate Method for Parameter Sensitivity Estimation in Monte Carlo Structural Reliability
,”
Comput. Struct.
,
82
(
1
), pp.
55
61
. 10.1016/j.compstruc.2003.08.003
22.
Kucherenko
,
S.
,
Rodriguez-Fernandez
,
M.
,
Pantelides
,
C.
, and
Shah
,
N.
,
2009
, “
Monte Carlo Evaluation of Derivative-Based Global Sensitivity Measures
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1135
1148
. 10.1016/j.ress.2008.05.006
23.
Kucherenko
,
S.
,
2010
, “
A New Derivative Based Importance Criterion for Groups of Variables and Its Link With the Global Sensitivity Indices
,”
Comput. Phys. Commun.
,
181
(
7
), pp.
1212
1217
. 10.1016/j.cpc.2010.03.006
24.
Yang
,
R.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
J. Mech. Des.
,
127
(
5
), pp.
1014
1020
. 10.1115/1.1906264
25.
Takhounts
,
E. G.
,
Craig
,
M.
,
Moorhouse
,
K.
,
Mcfadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
(
Nov.
), pp.
243
266
.
26.
Jiang
,
C.
, and
Han
,
X.
,
2007
, “
A New Uncertain Optimization Method Based on Intervals and an Approximation Management Model
,”
Comput. Model. Eng.
,
22
(
2
), pp.
97
118
.
27.
Liu
,
J.
,
Liu
,
H.
,
Jiang
,
C.
,
Han
,
X.
,
Zhang
,
D. Q.
, and
Hu
,
Y. F.
,
2018
, “
A New Measurement for Structural Uncertainty Propagation Based on Pseudo-Probability Distribution
,”
Appl. Math. Model.
,
63
(
Nov.
), pp.
744
760
. 10.1016/j.apm.2018.07.017
28.
Kimpara
,
H.
, and
Iwamoto
,
M.
,
2012
, “
Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
114
126
. 10.1007/s10439-011-0414-2
29.
Lee
,
Y. H.
,
Corman
,
R. E.
,
Ewoldt
,
R. H.
, and
Allison
,
J. T.
,
2017
, “
A Multiobjective Adaptive Surrogate Modeling-Based Optimization (MO-ASMO) Framework Using Efficient Sampling Strategies
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. V02BT03A023.
You do not currently have access to this content.