Abstract

Increasing the efficiency and density of power electronic systems (PESs) is an important objective for many high-impact applications, such as electric vehicle charging and aircraft electrification. Due to compactness and high heat dissipation, careful thermal monitoring of such PESs is required. Strategic placement of temperature sensors can improve the accuracy of real-time temperature distribution estimates. Enhanced temperature estimation supports increased power throughput and density because PESs can be operated in a less conservative manner while still preventing thermal failure. This article presents new methods for temperature sensor placement for 2- and 3-dimensional PESs that (1) improve computational efficiency (by orders of magnitude in at least one case), (2) support the use of more accurate evaluation metrics, and (3) are scalable to high-dimension sensor placement problems. These methods are tested via sensor placement studies based on a single-phase flying capacitor multi-level (FCML) prototype inverter. Information-based metrics are derived from a resistance-capacitance (RC) lumped parameter thermal model. Other more general metrics and system models are possible through the application of a new continuous relaxation strategy introduced here for placement representation. A new linear programming (LP) formulation is presented that is compatible with a particular type of information-based metric. This LP strategy is demonstrated to support an efficient solution of finely discretized large-scale placement problems. The optimal sensor locations obtained from these methods were tested via physical experiments. The new methods and results presented here may aid the development of thermally aware PESs with significantly enhanced capabilities.

References

1.
Peddada
,
S. R. T.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2017
, “
Optimal Sensor Placement Methods for Active Power Electronic Systems
,”
No. 58127
, p.
V02AT03A005
10.1115/DETC2017-68253.
2.
Kassakian
,
J. G.
, and
Jahns
,
T. M.
,
2013
, “
Evolving and Emerging Applications of Power Electronics in Systems
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
1
(
2
), pp.
47
58
. 10.1109/JESTPE.2013.2271111
3.
Lequesne
,
B.
,
2015
, “
Automotive Electrification: The Nonhybrid Story
,”
IEEE Trans. Transport. Electrific.
,
1
(
1
), pp.
40
53
. 10.1109/TTE.2015.2426573
4.
Yu
,
X. E.
,
Xue
,
Y.
,
Sirouspour
,
S.
, and
Emadi
,
A.
,
2012
, “
Microgrid and Transportation Electrification: A Review
,”
2012 IEEE Transportation Electrification Conference and Expo (ITEC)
, pp.
1
6
.
5.
Wheeler
,
P.
, and
Bozhko
,
S.
,
2014
, “
The More Electric Aircraft: Technology and Challenges
,”
IEEE Electrific. Mag.
,
2
(
4
), pp.
6
12
. 10.1109/MELE.2014.2360720
6.
Shen
,
M.
, and
Peng
,
F. Z.
,
2007
, “
Converter Systems for Hybrid Electric Vehicles
,”
2007 International Conference on Electrical Machines and Systems (ICEMS)
,
Seoul, South Korea
,
Oct. 8–11
, pp.
2004
2010
.
7.
Marz
,
M.
,
2003
, “
Thermal Management in High-Density Power Converters
,”
IEEE International Conference on Industrial Technology
,
Maribor, Slovenia
,
Dec. 10–12
, Vol.
2
, pp.
1196
1201
.
8.
Livshitz
,
A.
,
Chudnovsky
,
B. H.
,
Bukengolts
,
B.
, and
Chudnovsky
,
B. A.
,
2005
, “
On-Line Temperature Monitoring of Power Distribution Equipment
,”
Record of Conference Papers Industry Applications Society 52nd Annual Petroleum and Chemical Industry Conference
,
Denver, CO
,
Sept. 12–14
, pp.
223
231
.
9.
Staszewski
,
W. J.
, and
Worden
,
K.
,
2001
, “
Overview of Optimal Sensor Location Methods for Damage Detection
,”
Proc. SPIE
,
4326
(
1
), pp.
179
187
. 10.1117/12.436472
10.
Beygzadeh
,
S.
,
Salajegheh
,
E.
,
Torkzadeh
,
P.
,
Salajegheh
,
J.
, and
Naseralavi
,
S. S.
,
2014
, “
An Improved Genetic Algorithm for Optimal Sensor Placement in Space Structures Damage Detection
,”
Int. J. Space Struct.
,
29
(
3
), pp.
121
136
. 10.1260/0266-3511.29.3.121
11.
Guo
,
Z.
,
Kim
,
K.
,
Lanzara
,
G.
,
Salowitz
,
N.
,
Peumans
,
P.
, and
Chang
,
F.-K.
,
2011
, “
Micro-Fabricated, Expandable Temperature Sensor Network for Macro-Scale Deployment in Composite Structures
,”
2011 Aerospace Conference
,
Big Sky, MT
,
Mar. 5–12
, pp.
1
6
.
12.
Hernandez
,
E. M.
,
2017
, “
Efficient Sensor Placement for State Estimation in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
85
, pp.
789
800
. 10.1016/j.ymssp.2016.09.005
13.
Meo
,
M.
, and
Zumpano
,
G.
,
2005
, “
On the Optimal Sensor Placement Techniques for a Bridge Structure
,”
Eng. Struct.
,
27
(
10
), pp.
1488
1497
. 10.1016/j.engstruct.2005.03.015
14.
He
,
C.
,
Xing
,
J.
,
Li
,
J.
,
Yang
,
Q.
,
Wang
,
R.
, and
Zhang
,
X.
,
2013
, “
A Combined Optimal Sensor Placement Strategy for the Structural Health Monitoring of Bridge Structures
,”
Int. J. Distrib. Sensor Netw.
,
9
(
11
), p.
820694
. 10.1155/2013/820694
15.
Gupta
,
V.
,
Sharma
,
M.
, and
Thakur
,
N.
,
2010
, “
Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review
,”
J. Intell. Mater. Syst. Struct.
,
21
(
12
), pp.
1227
1243
. 10.1177/1045389X10381659
16.
Kumar
,
K. R.
, and
Narayanan
,
S.
,
2007
, “
The Optimal Location of Piezoelectric Actuators and Sensors for Vibration Control of Plates
,”
Smart Mater. Struct.
,
16
(
6
), p.
2680
. 10.1088/0964-1726/16/6/073
17.
Trease
,
B.
, and
Kota
,
S.
,
2009
, “
Design of Adaptive and Controllable Compliant Systems with Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111001
. 10.1115/1.3149848
18.
Kudikala
,
R.
,
Kalyanmoy
,
D.
, and
Bhattacharya
,
B.
,
2009
, “
Multi-objective Optimization of Piezoelectric Actuator Placement for Shape Control of Plates Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091007
. 10.1115/1.3160313
19.
Mushini
,
R.
, and
Simon
,
D.
,
2005
, “
On Optimization of Sensor Selection for Aircraft Gas Turbine Engines
,”
18th International Conference on Systems Engineering (ICSEng’05)
,
Las Vegas, NV
,
Aug. 16–18
, pp.
9
14
.
20.
Bhuiyan
,
M. Z. A.
,
Wang
,
G.
,
Cao
,
J.
, and
Wu
,
J.
,
2014
, “
Sensor Placement With Multiple Objectives for Structural Health Monitoring
,”
ACM Trans. Sen. Netw.
,
10
(
4
), pp.
68:1
68:45
. 10.1145/2533669
21.
Martínez
,
S.
, and
Bullo
,
F.
,
2006
, “
Optimal Sensor Placement and Motion Coordination for Target Tracking
,”
Automatica
,
42
(
4
), pp.
661
668
. 10.1016/j.automatica.2005.12.018
22.
Burns
,
J. A.
,
Borggaard
,
J.
,
Cliff
,
E.
, and
Zietsman
,
L.
,
2012
, “
An Optimal Control Approach to Sensor Actuator Placement for Optimal Control of High Performance Buildings
,”
International High Performance Buildings Conference
,
West Lafayette, IN
,
Aug. 1–3
.
23.
Wang
,
X.
,
Xing
,
G.
,
Chen
,
J.
,
Lin
,
C. X.
, and
Chen
,
Y.
,
2011
, “
Towards Optimal Sensor Placement for Hot Server Detection in Data Centers
,”
31st International Conference on Distributed Computing Systems
,
Minneapolis, MN
,
June 20–24
, pp.
899
908
.
24.
Papadopoulou
,
M.
,
Raphael
,
B.
,
Smith
,
I. F.
, and
Sekhar
,
C.
,
2016
, “
Optimal Sensor Placement for Time-Dependent Systems: Application to Wind Studies Around Buildings
,”
J. Comput. Civil Eng.
,
30
(
2
), p.
04015024
. 10.1061/(ASCE)CP.1943-5487.0000497
25.
Wu
,
X.
,
Liu
,
M.
, and
Wu
,
Y.
,
2012
, “
In-Situ Soil Moisture Sensing: Optimal Sensor Placement and Field Estimation
,”
ACM Trans. Sen. Netw.
,
8
(
4
), pp.
33:1
33:30
. 10.1145/2240116.2240122
26.
Seelan
,
S. K.
,
Laguette
,
S.
,
Casady
,
G. M.
, and
Seielstad
,
G. A.
,
2003
, “
Remote Sensing Applications for Precision Agriculture: A Learning Community Approach
,”
Remote Sens. Environ.
,
88
(
1–2
), pp.
157
169
. 10.1016/j.rse.2003.04.007
27.
Anurag
,
D.
,
Roy
,
S.
, and
Bandyopadhyay
,
S.
,
2008
, “
Agro-Sense: Precision Agriculture Using Sensor-Based Wireless Mesh Networks
,”
2008 First ITU-T Kaleidoscope Academic Conference – Innovations in NGN: Future Network and Services
,
Geneva, Switzerland
,
May 12–13
, pp.
383
388
.
28.
Du
,
W.
,
Xing
,
Z.
,
Li
,
M.
,
He
,
B.
,
Chua
,
L. H. C.
, and
Miao
,
H.
,
2014
, “
Optimal Sensor Placement and Measurement of Wind for Water Quality Studies in Urban Reservoirs
,”
Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, IPSN ’14
,
Berlin, Germany
,
Apr. 15–17
,
IEEE Press
, pp.
167
178
.
29.
Casillas
,
M. V.
,
Garza-Castañón
,
L. E.
, and
Puig
,
V.
,
2015
, “
Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Evolutionary Algorithms
,”
Water
,
7
(
11
), pp.
6496
6515
. 10.3390/w7116496
30.
Singh
,
A.
,
Houser
,
D. R.
, and
Vijayakar
,
S.
,
1999
, “
Detecting Gear Tooth Breakage Using Acoustic Emission: A Feasibility and Sensor Placement Study
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
587
593
. 10.1115/1.2829503
31.
Samad
,
N. A.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Knobloch
,
A.
,
2015
, “
Observability Analysis for Surface Sensor Location in Encased Battery Cells
,”
2015 American Control Conference (ACC)
, pp.
299
304
. 10.1109/ACC.2015.7170752
32.
Zenatti
,
F.
,
Fontanelli
,
D.
,
Palopoli
,
L.
,
Macii
,
D.
, and
Nazemzadeh
,
P.
,
2016
, “
Optimal Placement of Passive Sensors for Robot Localisation
,”
IEEE International Conference on Intelligent Robots and Systems
,
Daejeon, Korea
,
Oct. 9–14
, pp.
4586
4593
.
33.
Vertechy
,
R.
, and
Parenti-Castelli
,
V.
,
2005
, “
Real-Time Direct Position Analysis of Parallel Spherical Wrists by Using Extra Sensors
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
288
294
. 10.1115/1.2114888
34.
Arrichiello
,
F.
,
Antonelli
,
G.
,
Aguiar
,
A. P.
, and
Pascoal
,
A.
,
2013
, “
An Observability Metric for Underwater Vehicle Localization Using Range Measurements
,”
Sensors
,
13
(
12
), pp.
16191
16215
. 10.3390/s131216191
35.
Lovisari
,
E.
,
de Wit
,
C. C.
, and
Kibangou
,
A. Y.
,
2015
, “
Optimal Sensor Placement in Road Transportation Networks Using Virtual Variances
,”
54th IEEE Conference on Decision and Control (CDC)
,
Osaka, Japan
,
Dec. 15–18
, pp.
2786
2791
. 10.1109/CDC.2015.7402638
36.
Mainwaring
,
A.
,
Culler
,
D.
,
Polastre
,
J.
,
Szewczyk
,
R.
, and
Anderson
,
J.
,
2002
, “
Wireless Sensor Networks for Habitat Monitoring
,”
Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, WSNA ’02
,
ACM
,
Atlanta, GA
,
Sept. 28
, pp.
88
97
.
37.
Zhan
,
S. L.
,
Lai
,
J. Y.
, and
Huang
,
F.
,
2012
, “
Optimal Sensor Placement for High-Rise Building via Genetic Algorithms and Improved Information Matrix Criterion
,”
Advances in Civil Engineering and Architecture Innovation, Vol. 368 of Advanced Materials Research
,
Beilin, Xi'an, China
,
Sept. 6–8
,
Trans Tech Publications
, pp.
1653
1659
.
38.
Yi
,
T.
,
Li
,
H.
, and
Gu
,
M.
,
2011
, “
Optimal Sensor Placement for Structural Health Monitoring Based on Multiple Optimization Strategies
,”
Struct. Des. Tall Spec. Buildings
,
20
(
7
), pp.
881
900
. 10.1002/tal.712
39.
Georges
,
D.
,
1995
, “
The Use of Observability and Controllability Gramians or Functions for Optimal Sensor and Actuator Location in Finite-Dimensional Systems
,”
Proceedings of 1995 34th IEEE Conference on Decision and Control
,
New Orleans, LA
,
Dec. 13–15
, Vol.
4
, pp.
3319
3324
. 10.1109/CDC.1995.478999
40.
van den Berg
,
F.
,
Hoefsloot
,
H.
,
Boelens
,
H.
, and
Smilde
,
A.
,
2000
, “
Selection of Optimal Sensor Position in a Tubular Reactor Using Robust Degree of Observability Criteria
,”
Chem. Eng. Sci.
,
55
(
4
), pp.
827
837
. 10.1016/S0009-2509(99)00360-7
41.
Wilson
,
J.
, and
Guhe
,
S.
,
2005
, “
Observability Matrix Condition Number in Design of Measurement Strategies
,”
European Symposium on Computer-Aided Process Engineering-15, 38th European Symposium of the Working Party on Computer Aided Process Engineering
,
Barcelona, Spain
,
May 29–June 1
,
L.
Puigjaner
and
A.
Espuña
, eds., Vol.
20
of Computer Aided Chemical Engineering.
Elsevier
, pp.
397
402
.
42.
Sumana
,
C.
, and
Venkateswarlu
,
C.
,
2009
, “
Optimal Selection of Sensors for State Estimation in a Reactive Distillation Process
,”
J. Process. Control
,
19
(
6
), pp.
1024
1035
. 10.1016/j.jprocont.2009.01.003
43.
Zhang
,
Y.
, and
Srivastava
,
A.
,
2011
, “
Accurate Temperature Estimation Using Noisy Thermal Sensors for Gaussian and Non-Gaussian Cases
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
,
19
(
9
), pp.
1617
1626
. 10.1109/TVLSI.2010.2051567
44.
Nowroz
,
A. N.
,
Cochran
,
R.
, and
Reda
,
S.
,
2010
, “
Thermal Monitoring of Real Processors: Techniques for Sensor Allocation and Full Characterization
,”
Design Automation Conference
, pp.
56
61
. 10.1145/1837274.1837291
45.
Li
,
Q.
,
Cui
,
T.
,
Weng
,
Y.
,
Negi
,
R.
,
Franchetti
,
F.
, and
Ilic
,
M. D.
,
2013
, “
An Information-theoretic Approach to Pmu Placement in Electric Power Systems
,”
IEEE Trans. Smart Grid
,
4
(
1
), pp.
446
456
. 10.1109/TSG.2012.2228242
46.
Lee
,
K.-J.
,
Skadron
,
K.
, and
Huang
,
W.
,
2005
, “
Analytical Model for Sensor Placement on Microprocessors
,”
2005 International Conference on Computer Design
, pp.
24
27
. 10.1109/ICCD.2005.23
47.
Memik
,
S. O.
,
Mukherjee
,
R.
,
Ni
,
M.
, and
Long
,
J.
,
2008
, “
Optimizing Thermal Sensor Allocation for Microprocessors
,”
IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst.
,
27
(
3
), pp.
516
527
. 10.1109/TCAD.2008.915538
48.
Li
,
X.
,
Jiang
,
W.
, and
Zhou
,
W.
,
2016
, “
Optimising Thermal Sensor Placement and Thermal Maps Reconstruction for Microprocessors Using Simulated Annealing Algorithm Based on Pca
,”
IET Circuits Devices Syst.
,
10
(
6
), pp.
463
472
. 10.1049/iet-cds.2016.0201
49.
Zanini
,
F.
,
Atienza
,
D.
, and
Micheli
,
G. D.
,
2013
, “
A Combined Sensor Placement and Convex Optimization Approach for Thermal Management in 3d-mpsoc with Liquid Cooling
,”
Integr. {VLSI} J.
,
46
(
1
), pp.
33
43
. 10.1016/j.vlsi.2011.12.003
50.
Wang
,
H.
,
Tan
,
S. X. D.
,
Swarup
,
S.
, and
Liu
,
X. X.
,
2013
, “
A Power-Driven Thermal Sensor Placement Algorithm for Dynamic Thermal Management
,”
2013 Design, Automation Test in Europe Conference Exhibition (DATE)
,
Grenoble, France
,
Mar. 18–22
, pp.
1215
1220
.
51.
Zhou
,
H.
,
Li
,
X.
,
Cher
,
C. Y.
,
Kursun
,
E.
,
Qian
,
H.
, and
Yao
,
S. C.
,
2012
, “
An Information-Theoretic Framework for Optimal Temperature Sensor Allocation and Full-Chip Thermal Monitoring
,”
DAC Design Automation Conference 2012
,
San Francisco, CA
,
June 3–7
, pp.
642
647
.
52.
Zhang
,
Y.
, and
Srivastava
,
A.
,
2010
, “
Adaptive and Autonomous Thermal Tracking for High Performance Computing Systems
,”
Proceedings of the 47th Design Automation Conference, DAC ’10
,
Anaheim, CA
,
June 13–18
,
ACM
, pp.
68
73
. 10.1145/1837274.1837293
53.
Liu
,
J.
, and
Terzis
,
A.
,
2011
, “
Sensing Data Centres for Energy Efficiency
,”
Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
370
(
1958
), pp.
136
157
. 10.1098/rsta.2011.0245
54.
Lin
,
S. C.
, and
Banerjee
,
K.
,
2006
, “
An Electrothermally-Aware Full-Chip Substrate Temperature Gradient Evaluation Methodology for Leakage Dominant Technologies With Implications for Power Estimation and Hot-Spot Management
,”
2006 IEEE/ACM International Conference on Computer Aided Design
,
San Jose, CA
,
Nov. 5–9
, pp.
568
574
.
55.
Tannous
,
P. J.
,
Peddada
,
S. R. T.
,
Allison
,
J. T.
,
Foulkes
,
T.
,
Pilawa-Podgurski
,
R. C. N.
, and
Alleyne
,
A. G.
,
2017
, “
Dynamic Temperature Estimation of Power Electronics Systems
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
, pp.
3463
3469
.
56.
Tannous
,
P. J.
,
2017
, “
Dynamic Temperature Estimation of Power Electronics Systems
,” Masters thesis,
University of Illinois at Urbana Champaign
.
57.
Lei
,
Y.
,
Barth
,
C.
,
Qin
,
S.
,
Liu
,
W. C.
,
Moon
,
I.
,
Stillwell
,
A.
,
Chou
,
D.
,
Ye
,
T. F. Z.
,
Liao
,
Z.
, and
Pilawa-Podgurski
,
R.
,
2017
, “
A 2 kW, Single-Phase, 7-Level Flying Capacitor Multilevel Inverter with An Active Energy Buffer
,”
IEEE Trans. Power Electron.
,
32
(
11
), pp.
8570
8581
. 10.1109/TPEL.2017.2650140
58.
Tzoumas
,
V.
,
Jadbabaie
,
A.
, and
Pappas
,
G. J.
,
2016
, “
Sensor Placement for Optimal Kalman Filtering: Fundamental Limits, Submodularity, and Algorithms
,”
2016 American Control Conference (ACC)
,
Boston, MA
,
July 6–8
, pp.
191
196
.
59.
Deng
,
K.
,
Goyal
,
S.
,
Barooah
,
P.
, and
Mehta
,
P. G.
,
2014
, “
Structure-preserving Model Reduction of Nonlinear Building Thermal Models
,”
Automatica
,
50
(
4
), pp.
1188
1195
. 10.1016/j.automatica.2014.02.009
60.
Skadron
,
K.
,
Abdelzaher
,
T.
, and
Stan
,
M. R.
,
2002
, “
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management
,”
Proceedings of the 8th International Symposium on High-Performance Computer Architecture, HPCA ’02
,
Washington, DC
,
Feb. 2–6
,
IEEE Computer Society
, p.
17
.
61.
Müller
,
P.
, and
Weber
,
H.
,
1972
, “
Analysis and Optimization of Certain Qualities of Controllability and Observability for Linear Dynamical Systems
,”
Automatica
,
8
(
3
), pp.
237
246
. 10.1016/0005-1098(72)90044-1
62.
Singh
,
A. K.
, and
Hahn
,
J.
,
2005
, “
Determining Optimal Sensor Locations for State and Parameter Estimation for Stable Nonlinear Systems
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5645
5659
. 10.1021/ie040212v
63.
Kannan
,
R.
, and
Monma
,
C. L.
,
1978
, “On the Computational Complexity of Integer Programming Problems,”
Optimization and Operations Research
,
R.
Henn
,
B.
Korte
, and
W.
Oettli
, eds.,
Springer
,
Berlin Heidelberg
, pp.
161
172
.
64.
Newman
,
A. M.
, and
Weiss
,
M.
,
2013
, “
A Survey of Linear and Mixed-Integer Optimization Tutorials
,”
INFORMS Trans. Educ.
,
14
(
1
), pp.
26
38
. 10.1287/ited.2013.0115
65.
Joshi
,
S.
, and
Boyd
,
S.
,
2009
, “
Sensor Selection Via Convex Optimization
,”
Trans. Sig. Proc.
,
57
(
2
), pp.
451
462
. 10.1109/TSP.2008.2007095
66.
Rietz
,
A.
,
2001
, “
Sufficiency of a Finite Exponent in Simp (Power Law) Methods
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
159
163
. 10.1007/s001580050180
67.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
68.
Kang
,
Z.
,
Wang
,
X.
, and
Luo
,
Z.
,
2012
, “
Topology Optimization for Static Shape Control of Piezoelectric Plates With Penalization on Intermediate Actuation Voltage
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051006
. 10.1115/1.4006527
69.
Tannous
,
P. J.
,
Peddada
,
S. R.
,
Allison
,
J. T.
,
Foulkes
,
T.
,
Pilawa-Podgurski
,
R. C.
, and
Alleyne
,
A. G.
,
2019
, “
Model-Based Temperature Estimation of Power Electronics Systems
,”
Control Eng. Pract.
,
85
(
1
), pp.
206
215
. 10.1016/j.conengprac.2019.01.006
You do not currently have access to this content.