Abstract

Infilling strategies have been proposed for decades and are widely used in engineering problems. It is still challenging to achieve an effective trade-off between global exploration and local exploitation. In this paper, a novel decision-making infilling strategy named the Go-inspired hybrid infilling (Go-HI) strategy is proposed. The Go-HI strategy combines multiple individual infilling strategies, such as the mean square error (MSE), expected improvement (EI), and probability of improvement (PoI) strategies. The Go-HI strategy consists of two major parts. In the first part, a tree-like structure consisting of several subtrees is built. In the second part, the decision value for each subtree is calculated using a cross-validation (CV)-based criterion. Key factors that significantly influence the performance of the Go-HI strategy, such as the number of component infilling strategies and the tree depth, are explored. Go-HI strategies with different component strategies and tree depths are investigated and also compared with four baseline adaptive sampling strategies through three numerical functions and one engineering case. Results show that the number of component infilling strategies exerts a larger influence on the global and local performance than the tree depth; the Go-HI strategy with two component strategies performs better than the ones with three; the Go-HI strategy always outperforms the three component infilling strategies and the other four benchmark strategies in global performance and robustness and saves much computational cost.

References

References
1.
Garud
,
S. S.
,
Karimi
,
I. A.
, and
Kraft
,
M.
,
2017
, “
Design of Computer Experiments: A Review
,”
Comput. Chem. Eng.
,
106
, pp.
71
95
. 10.1016/j.compchemeng.2017.05.010
2.
Liu
,
H.
,
Ong
,
Y. S.
, and
Cai
,
J.
,
2018
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
393
416
.
3.
Owen
,
A.
,
1992
, “
Orthogonal Arrays for Computer Experiments, Integration and Visualization
,”
Stat. Sin.
,
2
(
2
), pp.
439
452
.
4.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
. 10.1080/00401706.2000.10485979
5.
Boddy
,
R.
, and
Smith
,
G.
,
2010
,
Effective Experimentation: For Scientists and Technologists
,
John Wiley & Sons
,
New York
.
6.
GroemPoIng
,
U.
,
2014
, “
Fractional Factorial Design
,”
Wiley Interdiscipl. Rev. Comput. Stat.
,
1
(
2
), pp.
234
244
.
7.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1992
, “
Exploratory Designs for Computational Experiments ⋆
,”
J. Stat. Plan. Inference
,
43
(
3
), pp.
381
402
. 10.1016/0378-3758(94)00035-T
8.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
,
2000
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Inference
,
90
(
1
), pp.
145
159
. 10.1016/S0378-3758(00)00105-1
9.
Viana
,
F. A. C.
,
Venter
,
G.
, and
Balabanov
,
V.
,
2010
, “
An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
,”
Int. J. Numer. Methods Eng.
,
82
(
2
), pp.
135
156
. 10.1002/nme.2750
10.
Long
,
T.
,
Wu
,
D.
,
Chen
,
X.
,
Guo
,
X.
, and
Liu
,
L.
,
2016
, “
A Deterministic Sequential Maximin Latin Hypercube Design Method Using Successive Local Enumeration for Metamodel-Based Optimization
,”
Eng. Optim.
,
48
(
6
), pp.
1019
1036
. 10.1080/0305215X.2015.1081518
11.
Cox
,
D. D.
, and
John
,
S.
,
1992
, “
SDO: A Statistical Method for Global Optimization
,”
IEEE International Conference on Systems, Man and Cybernetics, Vol. 2
,
Chicago, IL
,
Oct. 18–21
,
IEEE Xplore
, pp.
1241
1246
.
12.
Jones
,
D. R.
, and
A Taxonomy of Global Optimization Methods Based on Response
,
2001
,
J. Global Opt.
,
21
(
4
), pp.
345
383
.
13.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
J. Fluid Eng.
,
86
(
1
), pp.
97
106
.
14.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D. R.
,
1998
, “Global Versus Local Search in Constrained Optimization of Computer Models,”
New Developments and Applications in Experimental Design
,
N.
Flournoy
,
W. F.
Rosenberger
, and
W. K.
Wong
, eds.,
Institute of Mathematical Statistics
,
Hayward, CA
, pp.
11
25
.
15.
Jin
,
R.
,
Chen
,
W.
, and
Sudjitanto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Det02: ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
539
548
.
16.
Kuhnt
,
S.
, and
Steinberg
,
D. M.
,
2010
, “
Design and Analysis of Computer Experiments
,”
AStA Adv. Stat. Anal.
,
94
(
4
), pp.
307
309
. 10.1007/s10182-010-0143-0
17.
Lam
,
C. Q.
,
2008
, “
Sequential Adaptive Designs in Computer Experiments for Response Surface Model Fit
,” Doctoral dissertation,
The Ohio State University
,
Columbus, OH
.
18.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Global Optim.
,
33
(
1
), pp.
31
59
. 10.1007/s10898-004-6733-1
19.
Xu
,
S.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), pp.
69
74
. 10.1115/1.4027161
20.
Garud
,
S. S.
,
Karimi
,
I. A.
, and
Kraft
,
M.
,
2016
, “
Smart Sampling Algorithm for Surrogate Model Development
,”
Comput. Chem. Eng.
,
96
, pp.
103
114
.
21.
Liu
,
H.
,
Cai
,
J.
, and
Ong
,
Y. S.
,
2017
, “
An Adaptive Sampling Approach for Kriging Metamodeling by Maximizing Expected Prediction Error
,”
Comput. Chem. Eng.
,
106
, pp.
171
182
. 10.1016/j.compchemeng.2017.05.025
22.
Xiao
,
N. C.
,
Zuo
,
M. J.
,
Zhou
,
C.
,
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
. 10.1016/j.ress.2017.09.008
23.
Deschrijver
,
D.
,
Crombecq
,
K.
,
Nguyen
,
H. M.
, and
Dhaene
,
T.
,
2011
, “
Adaptive Sampling Algorithm for Macromodeling of Parameterized Formula Not Shown—Parameter Responses
,”
IEEE Trans. Microw. Theory Tech.
,
59
(
1
), pp.
39
45
. 10.1109/TMTT.2010.2090407
24.
Crombecq
,
K.
,
Tommasi
,
L. D.
,
Gorissen
,
D.
, and
Dhaene
,
T.
,
2009
, “
A Novel Sequential Design Strategy for Global Surrogate Modeling
,”
Simulation Conference
,
Austin, TX
,
Dec. 13–16
,
IEEE
, pp.
731
742
.
25.
Crombecq
,
K.
,
Gorissen
,
D.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2011
, “
A Novel Hybrid Sequential Design Strategy for Global Surrogate Modeling of Computer Experiments
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1948
1974
. 10.1137/090761811
26.
Van
,
D. H. J.
,
Couckuyt
,
I.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2015
, “
A Fuzzy Hybrid Sequential Design Strategy for Global Surrogate Modeling of High-Dimensional Computer Experiments
,”
SIAM J. Sci. Comput.
,
37
(
2
), pp.
A1020
A1039
.
27.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S. K.
,
Jiang
,
P.
,
Shao
,
X.
, and
Hu
,
J.
,
2017
, “
A Sequential Multi-Fidelity Metamodeling Approach for Data Regression
,”
Knowl. Based Syst.
,
134
, pp.
199
212
. 10.1016/j.knosys.2017.07.033
28.
Jiang
,
P.
,
Zhang
,
Y.
,
Zhou
,
Q.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2017
, “
An Adaptive Sampling Strategy for Kriging Metamodel Based on Delaunay Triangulation and TOPSIS
,”
Appl. Intell.
,
48
(
6
), pp.
1644
1656
.
29.
Zhang
,
Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
General Surrogate Adaptive Sampling Using Interquartile Range for Design Space Exploration
,”
AIAA Scitech Forum
,
San Diego, CA
,
Jan. 7–11
, p.
2213
.
30.
Chouard
,
T.
,
2016
, “
The Go Files: AI Computer Wins First Match Against Master Go Player
,”
Nature
.
31.
Forrester
,
D. A. I. J.
,
Sóbester
,
D. A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
New York
.
32.
Talgorn
,
B.
,
Kokkolaras
,
M.
, and
Digabel
,
S. L.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021405
. 10.1115/1.4028756
33.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
. 10.1198/TECH.2009.08040
34.
Viana
,
F. A.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscipl. Optim.
,
39
(
4
), pp.
439
457
. 10.1007/s00158-008-0338-0
You do not currently have access to this content.