Abstract

Evaluating the social impacts of engineered products is critical to ensuring that products are having their intended positive impacts and learning how to improve product designs for a more positive social impact. Quantitative evaluation of product social impacts is made possible through the use of social impact indicators, which combine the user data in a meaningful way to give insight into the current social condition of an individual or population. Most existing methods for collecting these user data for social impact indicators require direct human interaction with users of a product (e.g., interviews, surveys, and observational studies). These interactions produce high-fidelity data that help indicate the product impact but only at a single snapshot in time and are typically infrequently collected due to the large human resources and cost associated with obtaining them. In this article, a framework is proposed that outlines how low-fidelity data often obtainable using remote sensors, satellites, or digital technology can be collected and correlated with high-fidelity, infrequently collected data to enable continuous, remote monitoring of engineered products via the user data. These user data are critical to determining current social impact indicators that can be used in a posteriori social impact evaluation. We illustrate an application of this framework by demonstrating how it can be used to collect data for calculating several social impact indicators related to water hand pumps in Uganda. Key to this example is the use of a deep learning model to correlate user type (man, woman, or child statured) with the raw hand pump data obtained via an integrated motion unit sensor for 1200 hand pump users.

References

1.
United Nations Development Programme Growing Inclusive Markets Initiative
,
2008
,
Creating Value for All: Strategies for Doing Business With the Poor
,
United Nations Development Programme
,
New York
.
2.
Mattson
,
C. A.
, and
Winter
,
A. G.
,
2016
, “
Why the Developing World Needs Mechanical Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
070301
. 10.1115/1.4033549
3.
Wood
,
A. E.
, and
Mattson
,
C. A.
,
2016
, “
Design for the Developing World: Common Pitfalls and How to Avoid Them
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031101
. 10.1115/1.4032195
4.
George
,
C.
, and
Shams
,
A.
,
2007
, “
The Challenge of Including Customer Satisfaction Into the Assessment Criteria of Overseas Service-Learning Projects
,”
Int. J. Serv. Learn. Eng.
,
2
(
2
), pp.
64
75
. 10.24908/ijsle.v2i2.2092
5.
Burdge
,
R. J.
,
2004
,
A Community Guide to Social Impact Assessment
, Vol.
2
,
Social Ecology Press
.
6.
United Way of America
,
1996
,
Measuring Program Outcomes: A Practical Approach
,
Alexandria, VA
.
7.
Kellogg
,
W. K.
,
2006
,
WK Kellogg Foundation Logic Model Development Guide
,
WK Kellogg Foundation
.
8.
Clark
,
H.
, and
Anderson
,
A. A.
,
2004
, “
Theories of Change and Logic Models: Telling Them Apart
,”
American Evaluation Association Conference
,
Atlanta, GA
,
July 2004
.
9.
Stevenson
,
P. D.
,
Mattson
,
C. A.
,
Bryden
,
K. M.
, and
MacCarty
,
N. A.
,
2018
, “
Toward a Universal Social Impact Metric for Engineered Products That Alleviate Poverty
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041404
. 10.1115/1.4038925
10.
Stevenson
,
P. D.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
A Method for Creating Product Social Impact Models of Engineered Products
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041101
. 10.1115/1.4044161
11.
Hutchins
,
M. J.
,
Gierke
,
J. S.
, and
Sutherland
,
J. W.
,
2009
, “
Decision Making for Social Sustainability: A Life-Cycle Assessment Approach
,”
International Symposium on Technology and Society, Proceedings
,
Tempe, AZ
,
May 2009
, IEEE, pp.
1
5
.
12.
Fontes
,
S. J.
,
2016
,
Handbook for Product Social Impact Assessment
,
PRe Sustainability
,
The Netherlands
.
13.
Wood
,
A. E.
, and
Mattson
,
C. A.
,
2019
, “
Quantifying the Effects of Various Factors on the Utility of Design Ethnography in the Developing World
,”
Res. Eng. Des.
,
30
(
3
), pp.
317
338
. 10.1007/s00163-018-00304-2
14.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D: Transp. Environ.
,
32
(
1
), pp.
421
434
. 10.1016/j.trd.2014.08.007
15.
World Bank
,
2019
, “
Methodologies—World Bank Data Help Desk
.” https://datahelpdesk.worldbank.org/knowledgebase/articles/906531-methodologies
16.
Chhipi-Shrestha
,
G. K.
,
Hewage
,
K.
, and
Sadiq
,
R.
,
2015
, “
‘Socializing’ Sustainability: A Critical Review on Current Development Status of Social Life Cycle Impact Assessment Method
,”
Clean Technol. Environ. Policy
,
17
(
3
), pp.
579
596
. 10.1007/s10098-014-0841-5
17.
Donaldson
,
K.
,
2009
, “
The Future of Design for Development: Three Questions
,”
Inf. Technol. Int. Dev.
,
5
(
4
), pp.
97
100
.
18.
De Mauro
,
A.
,
Greco
,
M.
, and
Grimaldi
,
M.
,
2015
, “
What Is Big Data? A Consensual Definition and a Review of Key Research Topics
,”
AIP Conference Proceedings
,
Madrid, Spain
,
Sept. 2014
, Vol.
1644
, American Institute of Physics Publishing, pp.
97
104
.
19.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “ImageNet Classification With Deep Convolutional Neural Networks,”
Neural Information Processing Systems
, Vol.
25
,
Pereira
,
F.
,
Burges
,
C. J. C.
,
Bottou
,
L.
, and
Weinberger
,
K. Q.
, eds.,
Curran Associates Inc
, pp.
1097
1105
.
20.
Hu
,
Z.
,
Tang
,
J.
,
Wang
,
Z.
,
Zhang
,
K.
,
Zhang
,
L.
, and
Sun
,
Q.
,
2018
, “
Deep Learning for Image-Based Cancer Detection and Diagnosis—A Survey
,”
Pattern Recogn.
,
83
(
1
), pp.
134
149
. 10.1016/j.patcog.2018.05.014
21.
Levianthan
,
Y.
, and
Matias
,
Y.
,
2018
, “
Google Duplex: An AI System for Accomplishing Real-World Tasks Over the Phone
,” Google AI blog, vol.
8
.
22.
Yan
,
R.
,
2018
, “
Chitty-Chitty-Chat Bot: Deep Learning for Conversational AI
,”
IJCAI International Joint Conference on Artificial Intelligence
,
Stockholm, Sweden
,
July
, pp.
5520
5526
.
23.
Hossain
,
Z.
,
Sohel
,
F.
,
Shiratuddin
,
M. F.
, and
Laga
,
H.
,
2018
, “
A Comprehensive Survey of Deep Learning for Image Captioning
,”
Comput. Res. Repository
,
51
(
6
). 10.1145/3295748
24.
Bosco
,
C.
,
Alegana
,
V.
,
Bird
,
T.
,
Pezzulo
,
C.
,
Hornby
,
G.
,
Sorichetta
,
A.
,
Steele
,
J.
,
Ruktanonchai
,
C.
,
Ruktanonchai
,
N.
,
Wetter
,
E.
,
Bengtsson
,
L.
,
Tatem
,
A. J.
,
Di Clemente
,
R.
,
Luengo-Oroz
,
M.
,
González
,
M. C.
,
Nielsen
,
R.
,
Baar
,
T.
, and
Vacarelu
,
F.
,
2017
, “
Big Data and the Well-Being of Women and Girls Applications on the Social Scientific Frontier
,”
Data2x
,
1
(
1
).
Washington, DC
.
25.
DrivenData
,
2016
, “
Using Yelp Reviews to Flag Restaurant Health Risks
.” https://www.drivendata.co/case-studies/using-yelp-reviews-to-flag-restaurant-health-risks/
26.
Ignatov
,
A.
,
2018
, “
Real-Time Human Activity Recognition From Accelerometer Data Using Convolutional Neural Networks
,”
Appl. Soft Comput.
,
62
(
1
), pp.
915
922
. 10.1016/j.asoc.2017.09.027
27.
Medic.Life
,
2019
, “
MEDIC LAV
,” https://medic.life/technology/
28.
Quinn
,
J. A.
,
Nyhan
,
M. M.
,
Navarro
,
C.
,
Coluccia
,
D.
,
Bromley
,
L.
, and
Luengo-Oroz
,
M.
,
2018
, “
Humanitarian Applications of Machine Learning With Remote-Sensing Data: Review and Case Study in Refugee Settlement Mapping
,”
Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
376
(
2128
), p.
20170363
. 10.1098/rsta.2017.0363
29.
Satellite Imaging Corporation
,
2017
, “
Agriculture Mapping
,” https://www.satimagingcorp.com/applications/natural-resources/agriculture/
30.
Pandey
,
S. M.
,
Agarwal
,
T.
, and
Krishnan
,
N. C.
,
2018
, “
Multi-Task Deep Learning for Predicting Poverty From Satellite Images
,”
The 30th AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)
,
New Orleans, LA
,
Feb.
, IAAI, pp.
7793
7798
.
31.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2008
, “Identifying Customer Needs,”
Product Design and Development
, Chap. 4,
McGraw-Hill
,
New York
, p.
54
.
32.
Rainock
,
M.
,
Everett
,
D.
,
Pack
,
A.
,
Dahlin
,
E. C.
, and
Mattson
,
C. A.
,
2018
, “
The Social Impacts of Products: A Review
,”
Impact Assess. Project Appraisal
,
36
(
3
), pp.
230
241
. 10.1080/14615517.2018.1445176
33.
Pack
,
A. T.
,
Phipps
,
E. R.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2018
, “
Social Impact in Product Design: An Exploration of Current Industry Practices
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Canada
,
Aug.
, ASME, p. V02AT03A049.
34.
Ottosson
,
H. J.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
Analysis of Perceived Social Impacts of Existing Products Designed for the Developing World, With Implications for New Product Development
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051101
. 10.1115/1.4044323
35.
Silva
,
S.
, and
Gonçalves
,
I.
and
Sara
,
S.
,
2013
, “Balancing Learning and Overfitting in Genetic Programming With Interleaved Sampling of Training Data,”
European Conference on Genetic Programming
, pp.
73
84
.
36.
Delea
,
M. G.
,
Nagel
,
C. L.
,
Thomas
,
E. A.
,
Halder
,
A. K.
,
Amin
,
N.
,
Shoab
,
A. K.
,
Freeman
,
M. C.
,
Unicomb
,
L.
, and
Clasen
,
T. F.
,
2017
, “
Comparison of Respondent-Reported and Sensor-Recorded Latrine Utilization Measures in Rural Bangladesh: A Cross-Sectional Study
,”
Trans. R. Soc. Tropical Med. Hygiene
,
111
(
7
), pp.
308
315
. 10.1093/trstmh/trx058
37.
Guerra
,
L.
,
McGarry
,
L. M.
,
Robles
,
V.
,
Bielza
,
C.
,
Larrañaga
,
P.
, and
Yuste
,
R.
,
2011
, “
Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study
,”
Dev. Neurobiol.
,
71
(
1
), pp.
71
82
. 10.1002/dneu.20809
38.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
. http://www.deeplearningbook.org.
39.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
SMOTE: Synthetic Minority Over-Sampling Technique
,”
J. Artif. Intell. Res.
,
16
(
1
), pp.
321
357
. 10.1613/jair.953
40.
Lin
,
T.-Y.
,
Goyal
,
P.
,
Girshick
,
R.
,
He
,
K.
, and
Dollár
,
P.
,
2017
, “
Focal Loss for Dense Object Detection
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Honolulu, HI
,
July 2016
, pp.
2980
2988
.
41.
Das
,
B.
,
Krishnan
,
N. C.
, and
Cook
,
D. J.
,
2013
, “
Handling Class Overlap and Imbalance to Detect Prompt Situations in Smart Homes
,”
2013 IEEE 13th International Conference on Data Mining Workshops
,
Dallas, TX
,
Dec.
, IEEE, pp.
266
273
.
42.
Hestness
,
J.
,
Narang
,
S.
,
Ardalani
,
N.
,
Diamos
,
G.
,
Jun
,
H.
,
Kianinejad
,
H.
,
Patwary
,
M. M. A.
,
Yang
,
Y.
, and
Zhou
,
Y.
,
2017
, “
Deep Learning Scaling is Predictable, Empirically
,” arXiv preprint arXiv:1712.00409, pp.
1
19
.
43.
Jiménez
,
A.
, and
Pérez-Foguet
,
A.
,
2010
, “
Challenges for Water Governance in Rural Water Supply: Lessons Learned From Tanzania
,”
Int. J. Water Resour. Dev.
,
26
(
2
), pp.
235
248
. 10.1080/07900621003775763
44.
Makoni
,
F. S.
,
Manase
,
G.
, and
Ndamba
,
J.
,
2004
, “
Patterns of Domestic Water Use in Rural Areas of Zimbabwe, Gender Roles and Realities
,”
Phys. Chem. Earth, Parts A/B/C
,
29
(
15–18
), pp.
1291
1294
. 10.1016/j.pce.2004.09.013
45.
Thompson
,
J. A.
,
Folifac
,
F.
, and
Gaskin
,
S. J.
,
2011
, “
Fetching Water in the Unholy Hours of the Night: The Impacts of a Water Crisis on Girls’ Sexual Health in Semi-Urban Cameroon
,”
Girlhood Stud.
,
4
(
2
), pp.
111
129
. 10.3167/ghs.2011.040208
46.
World Health Organization
,
2017
, “
Progress on Drinking Water, Sanitation and Hygiene
,”
World Health Organization
,
1
(
1
).
Geneva, Switzerland
.
47.
World Bank
,
2003
, “
Morocco—Rural Water Supply and Sanitation Project
,”
World Bank
,
1
(
1
).
Washington, DC
.
48.
Assaad
,
R.
,
Levison
,
D.
, and
Zibani
,
N.
,
2010
, “
The Effect of Domestic Work on Girls’ Schooling: Evidence From Egypt
,”
Feminist Econ.
,
16
(
1
), pp.
79
128
. 10.1080/13545700903382729
49.
Sorenson
,
S. B.
,
Morssink
,
C.
, and
Campos
,
P. A.
,
2011
, “
Safe Access to Safe Water in Low Income Countries: Water Fetching in Current Times
,”
Soc. Sci. Med.
,
72
(
9
), pp.
1522
1526
. 10.1016/j.socscimed.2011.03.010
50.
Pommells
,
M.
,
Schuster-Wallace
,
C.
,
Watt
,
S.
, and
Mulawa
,
Z.
,
2018
, “
Gender Violence as a Water, Sanitation, and Hygiene Risk: Uncovering Violence Against Women and Girls as It Pertains to Poor WaSH Access
,”
Violence Against Women
,
24
(
15
), pp.
1851
1862
. 10.1177/1077801218754410
51.
Kakooza
,
A.
,
2018
, “
Schools’ and Other Institutions’ Calendar—2019
,”
Uganda Ministry of Education & Sports
,
1
(
1
).
52.
The World Bank
,
2017
, “
Compensation of Employees (Current LCU)—Uganda—Data
,” https://data.worldbank.org/indicator/GC.XPN.COMP.CN?locations=UG
53.
Meeker
,
M.
,
2018
, “
Internet Trends 2018
,”
2018 Code Conference
,
Rancho Palos Verdes, CA
,
May 2018
, p.
25
.
54.
Russakovsky
,
O.
,
Deng
,
J.
,
Su
,
H.
,
Krause
,
J.
,
Satheesh
,
S.
,
Ma
,
S.
,
Huang
,
Z.
,
Karpathy
,
A.
,
Khosla
,
A.
,
Bernstein
,
M.
,
Berg
,
A. C.
, and
Fei-Fei
,
L.
,
2015
, “
ImageNet Large Scale Visual Recognition Challenge
,”
Int. J. Comput. Vis.
,
115
(
3
), pp.
211
252
. 10.1007/s11263-015-0816-y
55.
JMP, Version 13, SAS Institute Inc., Cary, NC, 1989-2019.
56.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
, “
Automatic Differentiation in Pytorch
,” https://openreview.net/pdf?id=BJJsrmfCZ
57.
Google
,
2018
, “
Colaboratory: Frequently Asked Questions
,” https://research.google.com/colaboratory/faq.html, Accessed June 21, 2018.
58.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv:1412.6980
.
59.
Zhang
,
Z.
, and
Sabuncu
,
M. R.
,
2018
, “
Generalized Cross Entropy Loss for Training Deep Neural Networks With Noisy Labels
,”
Neural Information Processing Systems
, Montreal, Canada, pp.
8778
8788
.
60.
Rural Water Supply Network
,
2019
, “
Implementation – Handpump Technology
, https://www.rural-water-supply.net/en/implementation/public-domain-handpumps/india-mark-ii.
61.
Institute of Medicine of the National Academies
,
2002
, “
Panel on Macronutrients, Panel on the Definition of Dietary Fiber
,”
National Academies of Sciences
,
1
(
1
).
Washington, DC
.
62.
Campos
,
F.
,
Goldstein
,
M.
,
Mcgorman
,
L.
,
Munoz Boudet
,
A. M.
, and
Pimhidzai
,
O.
,
2015
, “
Breaking the Metal Ceiling Female Entrepreneurs Who Succeed in Male-Dominated Sectors
,” World Bank, https://www.econstor.eu/bitstream/10419/190011/1/wp2017-166.pdf
You do not currently have access to this content.