Abstract

An approach is proposed to quantify the uncertainty in probability of failure using a Gaussian process (GP) and to estimate uncertainty change before actually adding samples to GP. The approach estimates the coefficient of variation (CV) of failure probability due to prediction variance of GP. The CV is estimated using single-loop Monte Carlo simulation (MCS), which integrates the probabilistic classification function while replacing expensive multi-loop MCS. The methodology ensures a conservative estimate of CV, in order to compensate for sampling uncertainty in MCS. Uncertainty change is estimated by adding a virtual sample from the current GP and calculating the change in CV, which is called expected uncertainty change (EUC). The proposed method can help adaptive sampling schemes to determine when to stop before adding a sample. In numerical examples, the proposed method is used in conjunction with the efficient local reliability analysis to calculate the reliability of analytical function as well as the battery drop test simulation. It is shown that the EUC converges to the true uncertainty change as the model becomes accurate.

References

References
1.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
. 10.1111/1467-9868.00294
2.
O’Hagan
,
A.
,
1992
, “
Some Bayesian Numerical Algebra
,”
Bayesian Stat.
,
8
, pp.
345
363
.
3.
Brooker
,
P. I.
,
1986
, “
A Parametric Study of Robustness of Kriging Variance as a Function of Range and Relative Nugget Effect for a Spherical Semivariogram
,”
Math. Geol.
,
18
(
5
), pp.
477
488
. 10.1007/BF00897500
4.
Simon
,
C.
, and
Bicking
,
F.
,
2017
, “
Hybrid Computation of Uncertainty in Reliability Analysis With P-Box and Evidential Networks
,”
Reliab. Eng. Syst. Saf.
,
167
, pp.
629
638
. 10.1016/j.ress.2017.04.015
5.
Karanki
,
D. R.
,
Kushwaha
,
H. S.
,
Verma
,
A. K.
, and
Ajit
,
S.
,
2009
, “
Uncertainty Analysis Based on Probability Bounds (P-Box) Approach in Probabilistic Safety Assessment
,”
Risk Anal.
,
29
(
5
), pp.
662
675
. 10.1111/j.1539-6924.2009.01221.x
6.
Wilson
,
A. G.
,
Anderson-Cook
,
C. M.
, and
Huzurbazar
,
A. V.
,
2011
, “
A Case Study for Quantifying System Reliability and Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1076
1084
. 10.1016/j.ress.2010.09.012
7.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2016
, “
Reliability Analysis Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
155
, pp.
9
20
. 10.1016/j.ress.2016.06.005
8.
Nannapaneni
,
S.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Uncertainty Quantification in Reliability Estimation With Limit State Surrogates
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1509
1526
. 10.1007/s00158-016-1487-1
9.
Moon
,
M.-Y.
,
Choi
,
K. K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
.”
42nd Design Automation Conference
, Vol.
2B
, p.
V02BT03A054
10.
Bae
,
S.
,
Kim
,
N. H.
, and
Jang
,
S. g.
,
2018
, “
Reliability-Based Design Optimization Under Sampling Uncertainty: Shifting Design Versus Shaping Uncertainty
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1845
1855
. 10.1007/s00158-018-1936-0
11.
Liu
,
H.
,
Xu
,
S.
,
Ma
,
Y.
,
Chen
,
X.
, and
Wang
,
X.
,
2016
, “
An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling
,”
ASME J. Mech. Des. Trans. ASME
,
138
(
1
), p.
011404
. 10.1115/1.4031905
12.
Meng
,
Z.
,
Zhang
,
D.
,
Liu
,
Z.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des. Trans. ASME
,
140
(
12
), p.
121406
. 10.1115/1.4040883
13.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
14.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
. 10.2514/1.34321
15.
Seeger
,
M.
,
2004
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
,
14
(
2
), pp.
69
106
. 10.1142/S0129065704001899
16.
Xu
,
H.
,
2020
, “
Constructing Oscillating Function-Based Covariance Matrix to Allow Negative Correlations in Gaussian Random Field Models for Uncertainty Quantification
,”
ASME J. Mech. Des.
,
142
(
7
), p.
074501
. 10.1115/1.4046067
17.
Cressie
,
N.
,
1988
, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geol.
,
20
(
4
), pp.
405
421
. 10.1007/BF00892986
18.
Achintya
,
H.
, and
Mahadevan
,
S.
,
2002
,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
19.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
. 10.1115/1.4007391
20.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091005
. 10.1115/1.4007150
21.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
. 10.1016/S0266-8920(01)00019-4
22.
Kotz
,
S.
, and
Nadarajah
,
S.
,
2000
,
Extreme Value Distributions: Theory and Applications
,
Imperial College Press
,
London
, pp.
3
4
.
23.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
. 10.1016/j.probengmech.2013.02.002
24.
Samuels
,
S. M.
,
2007
, “
On the Number of Successes in Independent Trials
,”
Ann. Math. Stat.
,
36
(
4
), pp.
1272
1278
. 10.1214/aoms/1177699998
25.
Trivedi
,
P. K.
, and
Zimmer
,
D. M.
,
2006
,
Copula Modeling: An Introduction for Practitioners
,
Now Publishers Inc.
,
Hanover, MA
, pp.
14
19
.
26.
Cox
,
D. R.
, and
Wermuth
,
N.
,
2006
, “
A Simple Approximation for Bivariate and Trivariate Normal Integrals
,”
Int. Stat. Rev./Rev. Int. Stat.
,
59
(
2
), p.
263
. 10.2307/1403446
27.
Bae
,
S.
, and
Kim
,
N. H.
,
2018
, “
An Adaptive Sampling Strategy to Minimize Uncertainty in Reliability Analysis Using Kriging Surrogate Model
,”
2018 AIAA Non-Deterministic Approaches Conference
,
Kissimmee, FL
,
Jan. 8–12
.
28.
Song
,
J. Y.
,
Wang
,
Y. Y.
, and
Wan
,
C. C.
,
1999
, “
Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
77
(
2
), pp.
183
197
. 10.1016/S0378-7753(98)00193-1
29.
Scrosati
,
B.
,
Croce
,
F.
, and
Panero
,
S.
,
2001
, “
Progress in Lithium Polymer Battery R&D
,”
J. Power Sources
,
100
(
1–2
), pp.
93
100
. 10.1016/S0378-7753(01)00886-2
30.
Meyer
,
W. H.
,
1998
, “
Polymer Electrolytes for Lithium-Ion Batteries
,”
Adv. Mater.
,
10
(
6
), pp.
439
448
. 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
31.
Lee
,
C. H.
,
Bae
,
S. J.
, and
Jang
,
M.
,
2015
, “
A Study on Effect of Lithium Ion Battery Design Variables Upon Features of Thermal-Runaway Using Mathematical Model and Simulation
,”
J. Power Sources
,
293
, pp.
498
510
. 10.1016/j.jpowsour.2015.05.095
32.
Choi
,
H. Y.
,
Lee
,
I.
,
Lee
,
J. S.
,
Kim
,
Y. M.
, and
Kim
,
H.
,
2013
, “
A Study On Mechanical Characteristics Of Lithiumpolymer Pouch Cell Battery For Electric Vehicle
,”
23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV)
,
Seoul, Korea
,
May 27–30
, Vol.
27
.
33.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econom.
,
60
(
1–2
), pp.
65
99
. 10.1016/0304-4076(94)90038-8
You do not currently have access to this content.