Abstract

This paper applies stress-based shape optimization to microstructures, a scarcely explored topic in the literature. As the actual stresses arising at the macroscopic structure are scale separated, the microstrucural stress is considered herein as the state of a representative volume element (RVE) after applying test unit strain load cases, not related to the macroscale loads. The three stress states in 2D are aggregated via p-norm functions, which are used for stress minimization. A stress-based level set method is applied. The method linearizes the objective and constraint functions and solves an optimization problem at every iteration to obtain the boundary velocities. The Ersatz material approach is used to compute the stiffness of the elements sliced by the boundary. A single hole inclusion microstructure is optimized for minimum stress in order to verify the methodology.

References

References
1.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
H. J.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
. 10.1115/1.4030994
2.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriax
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweiting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100905
. 10.1115/1.4037304
3.
Czech
,
C.
,
Guarneri
,
P.
,
Thygaraja
,
N.
, and
Fadel
,
G.
,
2015
, “
Systematic Design Optimization of the Metamaterial Shear Beam of a Nonpneumatic Wheel for Low Rolling Resistance
,”
ASME J. Mech. Des.
,
137
(
4
), p.
041404
. 10.1115/1.4029518
4.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
5.
Ren
,
X.
,
Shen
,
J.
,
Ghaedizadeh
,
A.
,
Tian
,
H.
, and
Xie
,
Y. M.
,
2015
, “
Experiments and Parametric Studies on 3d Metallic Auxetic Metamaterials With Tuneable Mechanical Properties
,”
Smart Mater. Struct.
,
24
(
9
), p.
095016
.
6.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041006
. 10.1115/1.4001210
7.
Saxena
,
R.
, and
Saxena
,
A.
,
2009
, “
Design of Electrothermally Compliant Mems With Hexagonal Cells Using Local Temperature and Stress Constraints
,”
ASME J. Mech. Des.
,
131
(
5
), p.
022301
. 10.1115/1.3087544
8.
Morton
,
P. A.
,
Mireles
,
J.
,
Mendoza
,
H.
,
Cordero
,
P. M.
,
Benedict
,
M.
, and
Wicker
,
R. B.
,
2015
, “
Enhancement of Low-Cycle Fatigue Performance From Tailored Microstructures Enabled by Electron Beam Melting Additive Manufacturing Technology
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111412
. 10.1115/1.4031057
9.
Zhou
,
M.
, and
Sigmund
,
O.
,
2017
, “
On Fully Stressed Design and p-Norm Measures in Structural Optimization
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
731
736
. 10.1007/s00158-017-1731-3
10.
Cheng
,
G. D.
, and
Guo
,
X.
,
1997
, “
ɛ-Relaxed Approach in Structural Topology Optimization
,”
Struct. Optim.
,
13
(
4
), pp.
258
266
. 10.1007/BF01197454
11.
Duysinx
,
P.
, and
Sigmund
,
O.
,
1998
, “
New Developments in Handling Stress Constraints in Optimal Magterial Distribution
,”
7th Symposium on Multidisciplinary Analysis and Optimization, AIAA/USAF/NASA/ISSMO
,
St. Louis, MO
,
Sept. 2–4
,
AIAA-88-4906, AIAA
, pp.
1501
1509
.
12.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
, pp.
605
620
. 10.1007/s00158-009-0440-y
13.
Verbart
,
A.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2017
, “
A Unified Aggregation and Relaxation Approach for Stress-Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
663
679
. 10.1007/s00158-016-1524-0
14.
Wang
,
M. Y.
, and
Li
,
L.
,
2013
, “
Shape Equilibrium Constraint: A Strategy for Stress-Constrained Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
3
), pp.
335
352
. 10.1007/s00158-012-0846-9
15.
Emmendoerfer
,
H.
, and
Fancello
,
E. A.
,
2014
, “
A Level Set Approach for Topology Optimization With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
99
(
2
), pp.
129
156
. 10.1002/nme.4676
16.
Xia
,
Q.
,
Shi
,
T.
,
Liu
,
S.
, and
Wang
,
M. Y.
,
2012
, “
A Level Set Solution to the Stress-Based Structural Shape and Topology Optimization
,”
Comput. Struct.
,
90–91
, pp.
55
64
. 10.1016/j.compstruc.2011.10.009
17.
James
,
K. A.
,
Lee
,
E.
, and
Martins
,
J. R. R. A.
,
2012
, “
Stress-Based Topology Optimization Using An Isoparametric Level Set Method
,”
Finite Elements Anal. Des.
,
58
, pp.
20
30
. 10.1016/j.finel.2012.03.012
18.
Zhang
,
W. S.
,
Guo
,
X.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2013
, “
Optimal Topology Design of Continuum Structures Wstress Concentration Alleviation Via Level Set Method
,”
Int. J. Numer. Methods Eng.
,
93
(
9
), pp.
942
959
. 10.1002/nme.4416
19.
Polajnar
,
M.
,
Kosel
,
F.
, and
Drazumeric
,
R.
,
2017
, “
Structural Optimization Using Global Stress-Deviation Objective Function Via the Level-Set Method
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
91
104
. 10.1007/s00158-016-1475-5
20.
Sharma
,
A.
, and
Maute
,
K.
,
2018
, “
Stress-Based Topology Optimization Using Spatial Gradient Stabilized XFEM
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
17
38
. 10.1007/s00158-017-1833-y
21.
Picelli
,
R.
,
Townsend
,
S.
,
Brampton
,
C.
,
Norato
,
J.
, and
Kim
,
H. A.
,
2018
, “
Stress-Based Shape and Topology Optimization With the Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
1
23
. 10.1016/j.cma.2017.09.001
22.
Lipton
,
R.
,
2003
, “
Assessment of the Local Stress State Through Macroscopic Variables
,”
Philos. Trans. R. Soc. London A
,
361
(
1806
), pp.
921
946
. 10.1098/rsta.2003.1172
23.
Lipton
,
R.
,
2002
, “
Relaxation Through Homogenization for Optimal Design Problems With Gradient Constraints
,”
J. Optim. Theory Appl.
,
114
(
1
), pp.
27
54
. 10.1023/A:1015408020092
24.
Lipton
,
R.
,
2004
, “
Stress Constrained G Closure and Relaxation of Structural Design Problems
,”
Q. Appl. Math.
,
62
(
2
), pp.
295
321
. 10.1090/qam/2054601
25.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
1
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
26.
Bendsøe
,
M. P.
,
Díaz
,
A. R.
,
Lipton
,
R.
, and
Taylor
,
J. E.
,
1995
, “
Optimal Design of Material Properties and Material Distribtuion for Multiple Loading Conditions
,”
Int. J. Numer. Methods Eng.
,
38
(
7
), pp.
1149
1170
. 10.1002/nme.1620380705
27.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
. 10.1063/1.117961
28.
Noël
,
L.
, and
Duysinx
,
P.
,
2017
, “
Shape Optimization of Microstructural Designs Subject to Local Stress Constraints Within An XFEM-level Set Framework
,”
Struct. Multidiscip. Optim.
,
55
(
6
), pp.
2323
2338
. 10.1007/s00158-016-1642-8
29.
Collet
,
M.
,
Noël
,
L.
,
Bruggi
,
M.
, and
Duysinx
,
P.
,
2018
, “
Topology Optimization for Microstructural Design Under Stress Constraints
,”
Struct. Multidiscipl. Optim.
,
58
(
6
), pp.
2677
2695
. 10.1007/s00158-018-2045-9
30.
Coelho
,
P. G.
,
Guedes
,
J. M.
, and
Cardoso
,
J. B.
,
2019
, “
Topology Optimization of Cellular Materials With Periodic Microstructure Under Stress Constraints
,”
Struct. Multidiscip. Optim.
,
59
(
2
), pp.
633
645
. 10.1007/s00158-018-2089-x
31.
Hassani
,
B.
, and
Hinton
,
E.
,
1999
,
Homogenization and Structural Topology Optimization
,
Springer
,
London, UK
.
32.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice Hall, Pearson Education, Inc.
,
Watertown, MA
.
33.
Picelli
,
R.
,
Townsend
,
S.
, and
Kim
,
H. A.
,
2018
, “
Stress and Strain Control Via Level Set Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
5
), pp.
2037
2051
. 10.1007/s00158-018-2018-z
34.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1267
1281
. 10.1007/s00158-016-1519-x
35.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
36.
Durelli
,
A. J.
, and
Rajaiah
,
K.
,
1979
, “
Optimum Hole Shapes in Finite Plates Under Uniaxial Load
,”
Techreport, School of Engineering, Oakland University
,
Rochester, MI
,
48063, Feb
.
37.
Pedersen
,
P.
,
2008
, “
Suggested Becnhmarks for Shape Optimization for Minimum Stress Concentration
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
273
283
. 10.1007/s00158-007-0148-9
38.
Wu
,
Z.
,
2009
, “
Optimal Hole Shape for Minimum Stress Concentration Using Parameterized Geometry Models
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
625
634
. 10.1007/s00158-008-0253-4
39.
Vigdergauz
,
S.
,
2001
, “
The Effective Properties of a Perforated Elastic Plate Numerical Optimization by Genetic Algorithm
,”
Int. J. Solids Struct.
,
38
(
48-49
), pp.
8593
8616
. 10.1016/S0020-7683(01)00189-5
40.
Grabovsky
,
Y.
, and
Kohn
,
R. V.
,
1995
, “
Microstructures Minimizing the Energy of a Two Phase Elastic Composite in Two Space Dimensions. II: The Vigdergauz Microstructure
,”
Int. J. Mech. Phys. Solids
,
43
(
6
), pp.
949
972
. 10.1016/0022-5096(95)00017-D
41.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
. 10.1016/0022-5096(63)90060-7
42.
Najafi
,
A. R.
,
Safdari
,
M.
,
Tortorelli
,
D. A.
, and
Geubelle
,
P. H.
,
2017
, “
Shape Optimization Using a Nurbs-Based Interface-Enriched Generalized FEM
,”
Int. J. Numer. Methods Eng.
,
111
(
10
), pp.
927
954
. 10.1002/nme.5482
You do not currently have access to this content.