Abstract

When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.

References

References
1.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
. 10.1115/1.4002200
2.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
. 10.1080/0305215X.2013.841905
3.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2010
, “
Sensitivity Analyses of FORM-Based and DRM-Based Performance Measure Approach (PMA) for Reliability-Based Design Optimization (RBDO)
,”
Int. J. Numer. Methods Eng.
,
82
(
1
), pp.
26
46
. 10.1002/nme.2752
4.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
. 10.1115/1.4007150
5.
Zhu
,
Z.
,
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Reliability Analysis for Multidisciplinary Systems Involving Stationary Stochastic Processes
,”
Proceedings of the IDETC/CIE
,
ASME Paper No. DETC2015-46168
.
6.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
Chichester
.
7.
Zio
,
E.
,
2013
,
System Reliability and Risk Analysis
,
Springer
,
London
.
8.
Balesdent
,
M.
,
Morio
,
J.
, and
Marzat
,
J.
,
2013
, “
Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation
,”
Struct. Saf.
,
44
, pp.
1
10
. 10.1016/j.strusafe.2013.04.001
9.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
. 10.1016/j.probengmech.2013.02.002
10.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
. 10.1016/j.ress.2012.10.008
11.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
12.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Sallaberry
,
C. J.
, and
Storlie
,
C. B.
,
2006
, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
(
10
), pp.
1175
1209
. 10.1016/j.ress.2005.11.017
13.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
,
1998
, “
Monte Carlo Techniques in Computational Stochastic Mechanics
,”
Arch. Comput. Methods Eng.
,
5
(
1
), pp.
3
29
. 10.1007/BF02736747
14.
Viana
,
F. A.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
,”
AIAA J.
,
52
(
4
), pp.
670
690
. 10.2514/1.J052375
15.
Picheny
,
V.
,
2009
, “
Improving Accuracy and Compensating for Uncertainty in Surrogate Modeling
,”
Ph.D. dissertation
,
University of Florida
,
Gainesville, FL
.
16.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
. 10.1214/ss/1177012413
17.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
,
82
(
2
), pp.
241
256
. 10.1016/j.compstruc.2003.09.002
18.
Bucher
,
C. G.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
. 10.1016/0167-4730(90)90012-E
19.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2001
, “
Neural-Network-Based Reliability Analysis: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
1–2
), pp.
113
132
. 10.1016/S0045-7825(01)00248-1
20.
Elhewy
,
A. H.
,
Mesbahi
,
E.
, and
Pu
,
Y.
,
2006
, “
Reliability Analysis of Structures Using Neural Network Method
,”
Probab. Eng. Mech.
,
21
(
1
), pp.
44
53
. 10.1016/j.probengmech.2005.07.002
21.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
. 10.1016/j.ress.2017.09.008
22.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
201
221
. 10.1007/s00158-011-0745-5
23.
Bourinet
,
J. M.
,
Deheeger
,
F.
, and
Lemaire
,
M.
,
2011
, “
Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
,”
Struct. Saf.
,
33
(
6
), pp.
343
353
. 10.1016/j.strusafe.2011.06.001
24.
Basudhar
,
A.
, and
Missoum
,
S.
,
2013
, “
Reliability Assessment Using Probabilistic Support Vector Machines
,”
Int. J. Reliab. Saf.
,
7
(
2
), pp.
156
173
. 10.1504/IJRS.2013.056378
25.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2017
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. A: Civil Eng.
,
3
(
2
), p.
D4016002
. 10.1061/AJRUA6.0000870
26.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
,
DACE—A Matlab Kriging Toolbox, Version 2.0
,
Technical University of Denmark
,
Lyngby
.
27.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
. 10.2514/1.8650
28.
Kleijnen
,
J. P.
,
2015
,
Design and Analysis of Simulation Experiments
,
Springer International Publishing
,
New York
, pp.
3
22
.
29.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
30.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
Mcfarland
,
J. M.
,
2012
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
. 10.2514/1.34321
31.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
. 10.1016/j.ress.2011.05.008
32.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
. 10.1016/j.strusafe.2011.01.002
33.
Fauriat
,
W.
, and
Gayton
,
N.
,
2014
, “
AK-SYS: An Adaptation of the AK-MCS Method for System Reliability
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
137
144
. 10.1016/j.ress.2013.10.010
34.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
35.
Viana
,
F. A. C.
,
Venter
,
G.
, and
Balabanov
,
V.
,
2010
, “
An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
,”
Int. J. Numer. Methods Eng.
,
82
(
2
), pp.
135
156
. 10.1002/nme.2750
36.
Sadoughi
,
M.
,
Li
,
M.
, and
Hu
,
C.
,
2018
, “
Multivariate System Reliability Analysis Considering Highly Nonlinear and Dependent Safety Events
,”
Reliab. Eng. Syst. Saf.
,
180
, pp.
189
200
. 10.1016/j.ress.2018.07.015
37.
McDonald
,
M.
, and
Mahadevan
,
S.
,
2008
, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021403
. 10.1115/1.2813782
38.
Smith
,
N.
, and
Mahadevan
,
S.
,
2005
, “
Integrating System-Level and Component-Level Designs Under Uncertainty
,”
J. Spacecr. Rockets
,
42
(
4
), pp.
752
760
. 10.2514/1.6662
39.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscipl. Optim.
,
42
(
2
), pp.
193
208
. 10.1007/s00158-009-0478-x
40.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics- and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
. 10.1115/1.4039770
You do not currently have access to this content.