Abstract

The ever-growing interest toward energy efficiency imposes the optimization of mechanism design under an energetic point of view. Even if the benefit of using spring balancing systems to reduce energy consumption is intuitive, the relation between spring design and electrical energy consumption has never been systematically addressed in the literature, which is mainly focused on static compensation of gravity forces. This paper tackles this novel and important issue and proposes an analytical method for model-based design of springs minimizing the energy required in rest-to-rest motion. The method relies on the model of energy dissipation that accounts for the characteristics of the mechanical, electrical, and power electronic components of a servo-actuated mechanism. The theory is developed with reference to a single rotating beam. The proposed solution ensures significant energy saving compared with the traditional static balancing design of springs and is particularly suitable for repetitive (cyclic) motion tasks.

References

References
1.
Arakelian
,
V.
, and
Ghazaryan
,
S.
,
2008
, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory
,
43
(
5
), pp.
565
575
. 10.1016/j.mechmachtheory.2007.05.002
2.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Robot.
,
30
(
2
), pp.
79
96
. 10.1080/01691864.2015.1090334
3.
Hollander
,
K. W.
,
Sugar
,
T. G.
, and
Herring
,
D. E.
,
2005
, “
Adjustable Robotic Tendon Using ‘Jack Spring’TM
Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics
,
Chicago, IL
,
June 28–July 1
, pp.
113
118
.
4.
Sugar
,
T. G.
, and
Hollander
,
K. W.
,
2012
, “
Adjustable Stiffness Jack Spring Actuator
,” U.S. Patent No. 8,322,695.
5.
Radaelli
,
G.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2011
, “
An Energy Approach to Static Balancing of Systems With Torsion Stiffness
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091006
. 10.1115/1.4004704
6.
Veer
,
S.
, and
Sujatha
,
S.
,
2015
, “
Approximate Spring Balancing of Linkages to Reduce Actuator Requirements
,”
Mech. Mach. Theory
,
86
, pp.
108
124
. 10.1016/j.mechmachtheory.2014.11.014
7.
Deepak
,
S. R.
, and
Ananthasuresh
,
G. K.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs but not Auxiliary Bodies
,”
ASME J. Mech. Robot.
,
4
(
2
), p.
021014
. 10.1115/1.4006521
8.
Cui
,
M. C.
,
Wang
,
S. X.
, and
Li
,
J. M.
,
2015
, “
Spring Gravity Compensation Using the Noncircular Pulley and Cable for the Less-Spring Design
,”
The 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
135
143
.
9.
Deepak
,
S. R.
,
Hansoge
,
A. N.
, and
Ananthasuresh
,
G. K.
,
2016
, “
Application of Rigid-Body-Linkage Static Balancing Techniques to Reduce Actuation Effort in Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
8
(
2
), p.
021005
. 10.1115/1.4031192
10.
Arakelian
,
V.
, and
Briot
,
S.
,
2010
, “
Simultaneous Inertia Force/Moment Balancing and Torque Compensation of Slider-Crank Mechanisms
,”
Mech. Res. Commun.
,
37
(
2
), pp.
265
269
. 10.1016/j.mechrescom.2009.11.007
11.
Wu
,
C. J.
, and
Angeles
,
J.
,
2001
, “
The Optimum Synthesis of an Elastic Torque-Compensating Cam Mechanism
,”
36
(
2
), pp.
245
259
. 10.1016/s0094-114x(00)00042-2
12.
Waide
,
P.
, and
Brunner
,
C. U.
,
2011
, “
Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems
,” No. 2011/7.
OECD Publishing, International Energy Agency
,
Paris, France
.
13.
Saidur
,
R.
,
2010
, “
A Review on Electrical Motors Energy Use and Energy Savings
,”
Renew. Sust. Energ. Rev.
,
14
(
3
), pp.
877
898
. 10.1016/j.rser.2009.10.018
14.
Chen
,
K. Y.
,
Huang
,
M. S.
, and
Fung
,
R. F.
,
2014
, “
Dynamic Modelling and Input-Energy Comparison for the Elevator System
,”
Appl. Math. Model.
,
38
(
7
), pp.
2037
2050
. 10.1016/j.apm.2013.10.026
15.
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Tech.
,
78
(
5–8
), pp.
1315
1328
. 10.1007/s00170-014-6737-z
16.
Altuzarra
,
O.
,
Pinto
,
C.
,
Sandru
,
B.
, and
Hernandez
,
A.
,
2011
, “
Optimal Dimensioning for Parallel Manipulators: Workspace, Dexterity, and Energy
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041007
. 10.1115/1.4003879
17.
Carabin
,
G.
,
Wehrle
,
E.
, and
Vidoni
,
R.
,
2017
, “
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
,”
Robotics
,
6
(
4
), p.
39
. 10.3390/robotics6040039
18.
Agrawal
,
A.
, and
Agrawal
,
S. K.
,
2007
, “
An Energy Efficient Manipulator Design Approach: Application to a Leg in Swing Phase
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
512
519
. 10.1115/1.2712218
19.
Zheng
,
C.
,
Hehenberger
,
P.
,
Le Duigou
,
J.
,
Bricogne
,
M.
, and
Eynard
,
B.
,
2017
, “
Multidisciplinary Design Methodology for Mechatronic Systems Based on Interface Model
,”
Res. Eng. Des.
,
28
(
3
), pp.
333
356
. 10.1007/s00163-016-0243-2
20.
Plooij
,
M.
, and
Wisse
,
M.
,
2012
, “
A Novel Spring Mechanism to Reduce Energy Consumption of Robotic Arms
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Portugal
,
Oct. 7–12,
pp.
2901
2908
.
21.
Biagiotti
,
L.
,
Moriello
,
L.
, and
Melchiorri
,
C.
,
2015
, “
A Repetitive Control Scheme for Industrial Robots Based on b-Spline Trajectories
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5417
5422
.
22.
Fang
,
Y.
,
Hu
,
J.
,
Qi
,
J.
,
Liu
,
W.
,
Wang
,
W.
, and
Peng
,
Y.
,
2018
, “
Planning Trigonometric Frequency Central Pattern Generator Trajectory for Cyclic Tasks of Robot Manipulators
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
11
), pp.
4014
4031
. 10.1177/0954406218806010
23.
Oriolo
,
G.
,
Cefalo
,
M.
, and
Vendittelli
,
M.
,
2017
, “
Repeatable Motion Planning for Redundant Robots Over Cyclic Tasks
,”
IEEE Trans Robot.
,
33
(
5
), pp.
1170
1183
. 10.1109/TRO.2017.2715348
24.
Nasiri
,
R.
,
Khoramshahi
,
M.
,
Shushtari
,
M.
, and
Ahmadabadi
,
M. N.
,
2017
, “
Adaptation in Variable Parallel Compliance: Towards Energy Efficiency in Cyclic Tasks
,”
IEEE/ASME Trans. Mech.
,
22
(
2
), pp.
1059
1070
. 10.1109/TMECH.2016.2637826
25.
Wongratanaphisan
,
T.
, and
Cole
,
M. O.
,
2008
, “
Analysis of a Gravity Compensated Four-Bar Linkage Mechanism With Linear Spring Suspension
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011006
. 10.1115/1.2803653
26.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2016
, “
Analytical Computation of the Energy-Efficient Optimal Planning in Rest-to-Rest Motion of Constant Inertia Systems
,”
Mechatronics
,
39
, pp.
147
159
. 10.1016/j.mechatronics.2016.05.004
27.
Rufer
,
A.
, and
Barrade
,
P.
,
2002
, “
A Supercapacitor-Based Energy-Storage System for Elevators With Soft Commutated Interface
,”
IEEE Trans. Ind. Appl.
,
38
(
5
), pp.
1151
1159
. 10.1109/TIA.2002.803021
28.
Verstraten
,
T.
,
Furnémont
,
R.
,
Mathijssen
,
G.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
Energy Consumption of Geared DC Motors in Dynamic Applications: Comparing Modeling Approaches
,”
IEEE Robot. Autom. Lett.
,
1
(
1
), pp.
524
530
. 10.1109/LRA.2016.2517820
29.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
30.
Caracciolo
,
R.
, and
Richiedei
,
D.
,
2014
, “
Optimal Design of Ball-Screw Driven Servomechanisms Through an Integrated Mechatronic Approach
,”
Mechatronics
,
24
(
7
), pp.
819
832
. 10.1016/j.mechatronics.2014.01.004
31.
Carwardine
,
G.
,
1934
, “
Improvements in Elastic Equiposing Mechanisms
” Pat. GB404615.
32.
Richiedei
,
D.
,
2018
, “
Integrated Selection of Gearbox, Gear Ratio, and Motor Through Scaling Rules
,”
Mech. Based Des. Struct. Mach.
,
46
(
6
), pp.
712
729
. 10.1080/15397734.2018.1453366
33.
Budinger
,
M.
,
Liscouët
,
J.
, and
Maré
,
J. C.
,
2012
, “
Estimation Models for the Preliminary Design of Electromechanical Actuators
,”
Proc. Inst. Mech. Eng. G: J. Aerosp. Eng.
,
226
(
3
), pp.
243
259
. 10.1177/0954410011408941
34.
Giberti
,
H.
,
Cinquemani
,
S.
, and
Legnani
,
G.
,
2011
, “
A Practical Approach to the Selection of the Motor-Reducer Unit in Electric Drive Systems
,”
Mech. Based Des. Struct. Mach.
,
39
(
3
), pp.
303
319
. 10.1080/15397734.2011.543048
35.
Giberti
,
H.
,
Clerici
,
A.
, and
Cinquemani
,
S.
,
2014
, “
Specific Accelerating Factor: One More Tool in Motor Sizing Projects
,”
Mechatronics
,
24
(
7
), pp.
898
905
. 10.1016/j.mechatronics.2013.11.007
36.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots
,
Springer-Verlag
,
Berlin, Germany
.
37.
Gasparetto
,
A.
,
Boscariol
,
P.
,
Lanzutti
,
A.
, and
Vidoni
,
R.
,
2012
, “
Trajectory Planning in Robotics
,”
Math. Comput. Sci.
,
6
(
3
), pp.
269
279
. 10.1007/s11786-012-0123-8
You do not currently have access to this content.