Abstract

Practicing design engineers often have certain knowledge about a design problem. However, in the last decades, the design optimization community largely treats design functions as black-boxes. This paper discusses whether and how knowledge can help with optimization, especially for large-scale optimization problems. Existing large-scale optimization methods based on black-box functions are first reviewed, and the drawbacks of those methods are briefly discussed. To understand what knowledge is and what kinds of knowledge can be obtained and applied in a design, the concepts of knowledge in both artificial intelligence (AI) and in the area of the product design are reviewed. Existing applications of knowledge in optimization are reviewed and categorized. Potential applications of knowledge for optimization are discussed in more detail, in hope to identify possible directions for future research in knowledge-assisted optimization (KAO).

References

1.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems : An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
2.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
. 10.1126/science.220.4598.671
3.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95—International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
,
IEEE
, pp.
1942
1948
.
4.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
5.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optim.
,
36
(
4
), pp.
419
438
. 10.1080/03052150410001686486
6.
Cheng
,
G. H.
,
Younis
,
A.
,
Haji Hajikolaei
,
K.
, and
Gary Wang
,
G.
,
2015
, “
Trust Region Based Mode Pursuing Sampling Method for Global Optimization of High Dimensional Design Problems
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021407
. 10.1115/1.4029219
7.
Haji Hajikolaei
,
K.
,
Cheng
,
G. H.
, and
Wang
,
G. G.
,
2015
, “
Optimization on Metamodeling-Supported Iterative Decomposition
,”
ASME J. Mech. Des.
,
138
(
2
), p.
021401
. 10.1115/1.4031982
8.
Hajikolaei
,
K. H.
,
Pirmoradi
,
Z.
,
Cheng
,
G. H.
, and
Wang
,
G. G.
,
2014
, “
Decomposition for Large-Scale Global Optimization Based on Quantified Variable Correlations Uncovered by Metamodelling
,”
Eng. Optim.
,
47
(
4
), pp.
429
452
. 10.1080/0305215X.2014.895338
9.
Regis
,
R. G.
, and
Shoemaker
,
C. A.
,
2013
, “
Combining Radial Basis Function Surrogates and Dynamic Coordinate Search in High-Dimensional Expensive Black-Box Optimization
,”
Eng. Optim.
,
45
(
5
), pp.
529
555
. 10.1080/0305215X.2012.687731
10.
Wu
,
D.
,
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2017
, “
Employing Partial Metamodels for Optimization With Scarce Samples
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
1329
1343
.
11.
Beynon
,
M.
,
Cosker
,
D.
, and
Marshall
,
D.
,
2001
, “
An Expert System for Multi-Criteria Decision Making Using Dempster Shafer Theory
,”
Expert Syst. Appl.
,
20
(
4
), pp.
357
367
. 10.1016/S0957-4174(01)00020-3
12.
Islam
,
M. B.
, and
Governatori
,
G.
,
2018
, “
RuleRS: A Rule-Based Architecture for Decision Support Systems
,”
Artif. Intell. Law
,
26
(
4
), pp.
315
344
. 10.1007/s10506-018-9218-0
13.
Kim
,
P.
, and
Ding
,
Y.
,
2005
, “
Optimal Engineering System Design Guided by Data-Mining Methods
,”
Technometrics
,
47
(
3
), pp.
336
348
. 10.1198/004017005000000157
14.
Cutbill
,
A.
, and
Wang
,
G. G.
,
2016
, “
Mining Constraint Relationships and Redundancies With Association Analysis for Optimization Problem Formulation
,”
Eng. Optim.
,
48
(
1
), pp.
115
134
. 10.1080/0305215X.2014.995177
15.
Backlund
,
P. B.
,
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2015
, “
Classifier-Guided Sampling for Discrete Variable, Discontinuous Design Space Exploration: Convergence and Computational Performance
,”
Eng. Optim.
,
47
(
5
), pp.
579
600
. 10.1080/0305215X.2014.908869
16.
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Kiehne
,
T. M.
,
2015
, “
All-Electric Ship Energy System Design Using Classifier-Guided Sampling
,”
IEEE Trans. Transp. Electrif.
,
1
(
1
), pp.
77
85
. 10.1109/TTE.2015.2426501
17.
Sharpe
,
C.
,
Morris
,
C.
,
Goldsberry
,
B.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2017
, “
Bayesian Network Structure Optimization for Improved Design Space Mapping for Design Exploration With Materials Design Applications
,”
Proceeding of ASME 2017 International Design Engineering Technical Conferences
,
Cleveland, OH
,
Aug. 6–9
, p.
V02BT03A004
.
18.
Wu
,
D.
, and
Wang
,
G. G.
,
2018
, “
Knowledge Assisted Optimization for Large-Scale Problems: A Review and Proposition
,”
Proceeding of ASME 2018 International Design Engineering Technical Conferences
,
Quebec City, Quebec
,
Aug. 26–29
, p.
V02BT03A032
.
19.
Boghossian
,
P. A.
,
2006
,
Fear of Knowledge : Against Relativism and Constructivism
,
Clarendon Press
,
Oxford
.
20.
Russell
,
S.
, and
Norvig
,
P.
,
2003
,
Artificial Intelligence: A Modern Approach
,
Prentice Hall
,
Englewood Cliffs, NJ
.
21.
Ernst
,
G. W.
, and
Newell
,
A.
,
1969
,
GPS: A Case Study in Generality and Problem Solving
,
Academic Press
,
New York
.
22.
Chandrasekaran
,
B.
,
1986
, “
Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design
,”
IEEE Expert
,
1
(
3
), pp.
23
30
. 10.1109/MEX.1986.4306977
23.
Hayes-Roth
,
F.
,
Waterman
,
D. A.
, and
Lenat
,
D. B.
,
1983
,
Build. Expert Syst.
, Vol.
50
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
24.
Liao
,
S.
,
2005
, “
Expert System Methodologies and Applications—A Decade Review From 1995 to 2004
,”
Expert Syst. Appl.
,
28
(
1
), pp.
93
103
. 10.1016/j.eswa.2004.08.003
25.
Hayes-Roth
,
F.
,
Waterman
,
D.
, and
Lenat
,
D.
,
1984
,
Building Expert Systems
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
26.
Bartlett
,
F. C.
, and
Burt
,
C.
,
1933
, “
Remembering: A Study in Experimental and Social Psychology
,”
Br. J. Educ. Psychol.
,
3
(
2
), pp.
187
192
. 10.1111/j.2044-8279.1933.tb02913.x
27.
Bernard
,
J. A.
,
1988
, “
Use of a Rule-Based System for Process Control
,”
IEEE Control Syst. Mag.
,
8
(
5
), pp.
3
13
. 10.1109/37.7735
28.
Åström
,
K. J.
,
Anton
,
J. J.
, and
Årzén
,
K.-E.
,
1986
, “
Expert Control
,”
Automatica
,
22
(
3
), pp.
277
286
. 10.1016/0005-1098(86)90026-9
29.
DeSanctis
,
G.
, and
Gallupe
,
R. B.
,
1987
, “
A Foundation for the Study of Group Decision Support Systems
,”
Manage. Sci.
,
33
(
5
), pp.
589
609
. 10.1287/mnsc.33.5.589
30.
Pawlak
,
Z.
,
1997
, “
Rough Set Approach to Knowledge-Based Decision Support
,”
Eur. J. Oper. Res.
,
99
(
1
), pp.
48
57
. 10.1016/S0377-2217(96)00382-7
31.
Richer
,
M. H.
,
1989
,
AI Tools and Techniques
,
Ablex Publishing
,
New York City, NY
.
32.
Li
,
Y.
,
McLean
,
D.
,
Bandar
,
Z. A.
,
O’Shea
,
J. D.
, and
Crockett
,
K.
,
2006
, “
Sentence Similarity Based on Semantic Nets and Corpus Statistics
,”
IEEE Trans. Knowl. Data Eng.
,
18
(
8
), pp.
1138
1150
. 10.1109/TKDE.2006.130
33.
Rada
,
R.
,
Mili
,
H.
,
Bicknell
,
E.
, and
Blettner
,
M.
,
1989
, “
Development and Application of a Metric on Semantic Nets
,”
IEEE Trans. Syst. Man Cybern.
,
19
(
1
), pp.
17
30
. 10.1109/21.24528
34.
Mankovskii
,
S.
,
Gogolla
,
M.
,
Urban
,
S. D.
,
Dietrich
,
S. W.
,
Urban
,
S. D.
,
Dietrich
,
S. W.
,
Yang
,
M.-H.
,
Dobbie
,
G.
,
Ling
,
T. W.
,
Halpin
,
T.
,
Kemme
,
B.
,
Schweikardt
,
N.
,
Abelló
,
A.
,
Romero
,
O.
,
Jimenez-Peris
,
R.
,
Stevens
,
R.
,
Lord
,
P.
,
Gruber
,
T.
,
Leenheer
,
P.
,
De Gal
,
A.
,
Bechhofer
,
S.
,
Paton
,
N. W.
,
Li
,
C.
,
Buchmann
,
A.
,
Hardavellas
,
N.
,
Pandis
,
I.
,
Liu
,
B.
,
Shapiro
,
M.
,
Bellatreche
,
L.
,
Gray
,
P. M. D.
,
Aalst
,
W. M. P.
,
Palmer
,
N.
,
Palmer
,
N.
,
Risch
,
T.
,
Galuba
,
W.
,
Girdzijauskas
,
S.
, and
Bechhofer
,
S.
,
2009
,
“OWL: Web Ontology Language,” Encyclopedia of Database Systems
,
Springer US
,
Boston, MA
.
35.
Guarino
,
N.
,
1998
, “
Formal Ontology and Information Systems
,”
Proceedings of FOIS ’98
,
Trento, Italy
,
June 6–8
,
IOS Press
, pp.
3
15
.
36.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
. 10.1006/knac.1993.1008
37.
Singhal
,
A.
,
2001
, “
Modern Information Retrieval: A Brief Overview
,”
IEEE Data Eng. Bull.
,
24
(
4
), pp.
35
43
.
38.
Hong
,
H.
,
Yin
,
Y.
, and
Chen
,
X.
,
2016
, “
Ontological Modelling of Knowledge Management for Human–Machine Integrated Design of Ultra-Precision Grinding Machine
,”
Enterp. Inf. Syst.
,
10
(
9
), pp.
970
981
. 10.1080/17517575.2015.1071433
39.
Sainter
,
P.
,
Oldham
,
K.
,
Larkin
,
A.
,
Murton
,
A.
, and
Brimble
,
R.
,
2000
, “
Product Knowledge Management Within Knowledge-Based Engineering Systems
,”
Design Engineering Technical Conference
,
Baltimore, MD
,
Sept. 10–13
.
40.
Sunnersjö
,
S.
,
2010
, “
A Taxonomy of Engineering Knowledge for Design Automation
,”
Proceedings of TMCE 2010 Symposium
,
Ancona, Italy
,
Apr. 12–16
.
41.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput. Des.
,
45
(
2
), pp.
204
228
. 10.1016/j.cad.2012.08.006
42.
Owen
,
R.
, and
Horváth
,
I.
,
2002
, “
Towards Product-Related Knowledge Asset Warehousing in Enterprises
,”
Proceedings of the 4th International Symposium on Tools and Methods of Competitive Engineering, TMCE
,
Wuhan, China
,
Apr. 22–26
, pp.
155
170
.
43.
Nonaka
,
I.
,
2008
, “
The Knowledge-Creating Company
,”
Harvard Business Review
,
85
(
7
), pp.
162
171
.
44.
Sowa
,
J. F.
,
2000
,
Knowledge Representation: Logical, Philosophical, and Computational Foundations
,
MIT Press
,
Cambridge, MA
.
45.
Gorti
,
S.
,
Gupta
,
A.
,
Kim
,
G.
,
Sriram
,
R.
, and
Wong
,
A.
,
1998
, “
An Object-Oriented Representation for Product and Design Processes
,”
Comput. Des.
,
30
(
7
), pp.
489
501
. 10.1016/s0010-4485(97)00087-0
46.
Rezgui
,
Y.
,
Boddy
,
S.
,
Wetherill
,
M.
, and
Cooper
,
G.
,
2011
, “
Past, Present and Future of Information and Knowledge Sharing in the Construction Industry: Towards Semantic Service-Based e-Construction?
,”
Comput. Des.
,
43
(
5
), pp.
502
515
. 10.1016/j.cad.2009.06.005
47.
Li
,
Z.
,
Raskin
,
V.
, and
Ramani
,
K.
,
2008
, “
Developing Engineering Ontology for Information Retrieval
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011003
. 10.1115/1.2830851
48.
Huhns
,
M. N.
, and
Singh
,
M. P.
,
1997
, “
Ontologies for Agents
,”
IEEE Internet Comput.
,
1
(
6
), pp.
81
83
. 10.1109/4236.643942
49.
La Rocca
,
G.
,
2012
, “
Knowledge Based Engineering: Between AI and CAD. Review of a Language Based Technology to Support Engineering Design
,”
Adv. Eng. Inform.
,
26
(
2
), pp.
159
179
. 10.1016/j.aei.2012.02.002
50.
La Rocca
,
G.
,
2011
,
“Knowledge Based Engineering Techniques to Support Aircraft Design and Optimization,” Aerospace Design, Integration & Operations
,
TU Delft
,
Delft
.
51.
Lovett
,
P.
,
Ingram
,
A.
, and
Bancroft
,
C.
,
2000
, “
Knowledge-Based Engineering for SMEs—A Methodology
,”
J. Mater. Process. Technol.
,
107
(
1–3
), pp.
384
389
. 10.1016/S0924-0136(00)00728-7
52.
La Rocca
,
G.
, and
Van Tooren
,
M. J. L.
,
2007
, “
Enabling Distributed Multi-Disciplinary Design of Complex Products: A Knowledge Based Engineering Approach
,”
J. Des. Res.
,
5
(
3
), pp.
333
352
. 10.1504/jdr.2007.014880
53.
Van Der Laan
,
A. H.
, and
Van Tooren
,
M. J. L.
,
2005
, “
Parametric Modeling of Movables for Structural Analysis
,”
J. Aircr.
,
42
(
6
), pp.
1605
1613
. 10.2514/1.9764
54.
Van Dijk
,
R.
,
d’Ippolito
,
R.
,
Tosi
,
G.
, and
La Rocca
,
G.
,
2011
, “
Multidisciplinary Design and Optimization of a Plastic Injection Mold Using an Integrated Design and Engineering Environment
,”
NAFEMS World Congress
,
Boston, MA
,
May 23–26
.
55.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscipl. Optim.
,
41
(
2
), pp.
219
241
. 10.1007/s00158-009-0420-2
56.
Wu
,
D.
,
Coatanea
,
E.
, and
Wang
,
G. G.
,
2019
, “
Employing Knowledge on Causal Relationship to Assist Multidisciplinary Design Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041402
. 10.1115/1.4042342
57.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
58.
Krishnamachari
,
R. S.
, and
Papalambros
,
P. Y.
,
1997
, “
Optimal Hierarchical Decomposition Synthesis Using Integer Programming
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
440
447
. 10.1115/1.2826388
59.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
1995
, “
A Network Reliability Approach to Optimal Decomposition of Design Problems
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
433
440
. 10.1115/1.2826697
60.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
1997
, “
A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems
,”
Comput. Optim. Appl.
,
8
(
2
), pp.
173
196
. 10.1023/A:1008673321406
61.
Wagner
,
T. C.
, and
Papalambros
,
P. Y.
,
1993
, “
General Framework for Decomposition Analysis in Optimal Design
,”
ASME Adv. Des. Autom.
,
65
(
2
), pp.
315
325
.
62.
Chen
,
L.
,
Ding
,
Z.
, and
Li
,
S.
,
2005
, “
A Formal Two-Phase Method for Decomposition of Complex Design Problems
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
184
195
. 10.1115/1.1778186
63.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,” NASA Technical Report, pp.
51
78
.
64.
Braun
,
D. R.
,
1996
,
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,
Department of Aeronautics and Astronautics, Stanford University
,
Stanford, CA
.
65.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R.
,
2000
, “
Bi-Level Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
. 10.2514/2.937
66.
Tedford
,
N. P.
, and
Martins
,
J. R. R. A.
,
2010
, “
Benchmarking Multidisciplinary Design Optimization Algorithms
,”
Optim. Eng.
,
11
(
1
), pp.
159
183
. 10.1007/s11081-009-9082-6
67.
Morris
,
D.
,
Antoniades
,
A.
, and
Took
,
C. C.
,
2017
, “
On Making Sense of Neural Networks in Road Analysis
,”
Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN)
,
Anchorage, AK
,
May 14–19
,
IEEE
, pp.
4416
4421
.
68.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
. 10.1007/s00158-001-0160-4
69.
Beasley
,
D.
,
Bull
,
D. R.
, and
Martin
,
R. R.
,
1993
, “
An Overview of Genetic Algorithms: Part 2, Research Topics
,”
Univ. Comput.
,
15
(
4
), pp.
170
181
.
70.
Louis
,
S. J.
, and
Zhao
,
F.
,
1995
, “
Domain Knowledge for Genetic Algorithms
,”
Exp. Syst. Res. Appl.
,
8
(
3
), pp.
195
212
.
71.
Hu
,
Y.
, and
Yang
,
S. X.
,
2004
, “
A Knowledge Based Genetic Algorithm for Path Planning of a Mobile Robot
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04)
,
New Orleans, LA
,
Apr. 26 – May 1
,
IEEE
, pp.
4350
4355
.
72.
Piroozfard
,
H.
,
Wong
,
K. Y.
, and
Hassan
,
A.
,
2016
, “
A Hybrid Genetic Algorithm With a Knowledge-Based Operator for Solving the Job Shop Scheduling Problems
,”
J. Optim.
,
2016
, pp.
1
13
.
73.
Winer
,
E. H.
, and
Bloebaum
,
C. L.
,
2002
, “
Development of Visual Design Steering as an Aid in Large-Scale Multidisciplinary Design Optimization. Part I : Method Development
,”
Struct. Multidiscipl. Optim.
,
23
(
6
), pp.
412
424
. 10.1007/s00158-002-0203-5
74.
Winer
,
E. H.
, and
Bloebaum
,
C. L.
,
2002
, “
Development of Visual Design Steering as an Aid in Large-Scale Multidisciplinary Design Optimization. Part II: Method Validation
,”
Struct. Multidiscipl. Optim.
,
23
(
6
), pp.
425
435
. 10.1007/s00158-002-0204-4
75.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
. 10.1098/rspa.2007.1900
76.
Wang
,
F.
, and
Zhang
,
Q.-J.
,
1997
, “
Knowledge-Based Neural Models for Microwave Design
,”
IEEE Trans. Microw. Theory Tech.
,
45
(
12
), pp.
2333
2343
. 10.1109/22.643839
77.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
,
Lu
,
Y.
, and
Witherell
,
P.
,
2017
, “
Investigating Grey-Box Modeling for Predictive Analytics in Smart Manufacturing
,”
Proceedings of ASME 2017 International Design Engineering Technical Conferences
,
Cleveland, OH
,
Aug. 6–9
,
ASME
, p.
V02BT03A024
.
78.
Kurek
,
M.
,
Deisenroth
,
M. P.
,
Luk
,
W.
, and
Todman
,
T.
,
2016
, “
Knowledge Transfer in Automatic Optimisation of Reconfigurable Designs
,”
Proceedings of 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)
,
Washington, DC
,
May 1–3
,
IEEE
, pp.
84
87
.
79.
Kurek
,
M.
,
Becker
,
T.
,
Chau
,
T. C. P.
, and
Luk
,
W.
,
2014
, “
Automating Optimization of Reconfigurable Designs
,”
Proceedings of 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines
,
Boston, MA
,
May 11–13
, pp.
210
213
.
80.
Ding
,
C.
,
He
,
X.
,
Zha
,
H.
, and
Simon
,
H. D.
,
2002
, “
Adaptive Dimension Reduction for Clustering High Dimensional Data
,”
Proceedings of 2002 IEEE International Conference on Data Mining
,
Maebashi City, Japan
,
Dec. 9–12
, pp.
147
154
.
81.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plan. Inference
,
43
(
3
), pp.
381
402
. 10.1016/0378-3758(94)00035-T
82.
Karwan
,
M. H.
,
Lotfi
,
V.
,
Telgen
,
J.
, and
Zionts
,
S.
,
2012
,
Redundancy in Mathematical Programming: A State-of-the-Art Survey
,
Springer Science & Business Media
,
New York
.
83.
Liu
,
Z.-L.
,
Zhang
,
Z.
, and
Chen
,
Y.
,
2012
, “
A Scenario-Based Approach for Requirements Management in Engineering Design
,”
Concurr. Eng.
,
20
(
2
), pp.
99
109
. 10.1177/1063293X12440895
84.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
. 10.1115/1.4037306
85.
Larson
,
B. J.
, and
Mattson
,
C. A.
,
2012
, “
Design Space Exploration for Quantifying a System Model’s Feasible Domain
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041010
. 10.1115/1.4005861
86.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13–14
), pp.
1463
1476
. 10.1016/j.compstruc.2007.05.023
87.
Yang
,
H. Z.
,
Chen
,
J. F.
,
Ma
,
N.
, and
Wang
,
D. Y.
,
2012
, “
Implementation of Knowledge-Based Engineering Methodology in Ship Structural Design
,”
Comput. Des.
,
44
(
3
), pp.
196
202
. 10.1016/j.cad.2011.06.012
88.
Geyer
,
P.
,
2009
, “
Component-Oriented Decomposition for Multidisciplinary Design Optimization in Building Design
,”
Adv. Eng. Inform.
,
23
(
1
), pp.
12
31
. 10.1016/j.aei.2008.06.008
89.
Ahmed
,
S.
,
Kim
,
S.
, and
Wallace
,
K. M.
,
2007
, “
A Methodology for Creating Ontologies for Engineering Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
2
), pp.
132
140
. 10.1115/1.2720879
90.
Jinxin Lin
,
J.
,
Fox
,
M. S.
, and
Bilgic
,
T.
,
1996
, “
A Requirement Ontology for Engineering Design
,”
Concurr. Eng.
,
4
(
3
), pp.
279
291
. 10.1177/1063293X9600400307
91.
Stachtiari
,
E.
,
Mavridou
,
A.
,
Katsaros
,
P.
,
Bliudze
,
S.
, and
Sifakis
,
J.
,
2018
, “
Early Validation of System Requirements and Design Through Correctness-by-Construction
,”
J. Syst. Softw.
,
145
(
1
), pp.
52
78
. 10.1016/j.jss.2018.07.053
92.
Wu
,
D.
,
Coatanea
,
E.
, and
Wang
,
G. G.
,
2017
, “
Dimension Reduction and Decomposition Using Causal Graph and Qualitative Analysis for Aircraft Concept Design Optimization
,”
Proceedings of ASME 2017 International Design Engineering Technical Conferences
,
Cleveland, OH
,
Aug. 6–9
, p.
V02BT03A035
.
93.
Viswanath
,
A.
,
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2011
, “
Dimension Reduction for Aerodynamic Design Optimization
,”
AIAA J.
,
49
(
6
), pp.
1256
1266
. 10.2514/1.J050717
94.
Sutha
,
K.
, and
Tamilselvi
,
J. J.
,
2015
, “
A Review of Feature Selection Algorithms for Data Mining Techniques
,”
Int. J. Comput. Sci. Eng.
,
7
(
6
), pp.
63
67
.
95.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
. 10.1016/j.compeleceng.2013.11.024
96.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
(
Mar.
), pp.
1157
1182
.
97.
Lazar
,
C.
,
Taminau
,
J.
,
Meganck
,
S.
,
Steenhoff
,
D.
,
Coletta
,
A.
,
Molter
,
C.
,
de Schaetzen
,
V.
,
Duque
,
R.
,
Bersini
,
H.
, and
Nowe
,
A.
,
2012
, “
A Survey on Filter Techniques for Feature Selection in Gene Expression Microarray Analysis
,”
IEEE/ACM Trans. Comput. Biol. Bioinform.
,
9
(
4
), pp.
1106
1119
. 10.1109/TCBB.2012.33
98.
Reunanen
,
J.
,
2003
, “
Overfitting in Making Comparisons Between Variable Selection Methods
,”
J. Mach. Learn. Res.
,
3
(
Mar.
), pp.
1371
1382
.
99.
Alexandridis
,
A.
,
Patrinos
,
P.
,
Sarimveis
,
H.
, and
Tsekouras
,
G.
,
2005
, “
A Two-Stage Evolutionary Algorithm for Variable Selection in the Development of RBF Neural Network Models
,”
Chemom. Intell. Lab. Syst.
,
75
(
2
), pp.
149
162
. 10.1016/j.chemolab.2004.06.004
100.
Shan
,
S.
, and
Wang
,
G. G.
,
2011
, “
Turning Black-Box Functions Into White Functions
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031003
. 10.1115/1.4002978
101.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
102.
Ghanbari
,
A.
,
Kazemi
,
S. M. R.
,
Mehmanpazir
,
F.
, and
Nakhostin
,
M. M.
,
2013
, “
A Cooperative Ant Colony Optimization-Genetic Algorithm Approach for Construction of Energy Demand Forecasting Knowledge-Based Expert Systems
,”
Knowl. Based Syst.
,
39
(
1
), pp.
194
206
. 10.1016/j.knosys.2012.10.017
103.
Fazel Zarandi
,
M. H.
,
Rezaee
,
B.
,
Turksen
,
I. B.
, and
Neshat
,
E.
,
2009
, “
A Type-2 Fuzzy Rule-Based Expert System Model for Stock Price Analysis
,”
Expert Syst. Appl.
,
36
(
1
), pp.
139
154
. 10.1016/j.eswa.2007.09.034
104.
Zhang
,
J.
,
Ghahramani
,
Z.
, and
Yang
,
Y.
,
2008
, “
Flexible Latent Variable Models for Multi-Task Learning
,”
Mach. Learn.
,
73
(
3
), pp.
221
242
. 10.1007/s10994-008-5050-1
105.
Wang
,
G. G.
,
2003
, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
210
220
. 10.1115/1.1561044
106.
Wang
,
G. G.
,
Dong
,
Z.
, and
Attchison
,
P.
,
2001
, “
Adaptive Response Surface Method—A Global Optimization Scheme for Approximation-Based Design Problems
,”
Eng. Optim.
,
33
(
6
), pp.
707
733
. 10.1080/03052150108940940
107.
Long
,
T.
,
Wu
,
D.
,
Guo
,
X.
,
Wang
,
G. G.
, and
Liu
,
L.
,
2015
, “
Efficient Adaptive Response Surface Method Using Intelligent Space Exploration Strategy
,”
Struct. Multidiscipl. Optim.
,
51
(
6
), pp.
1335
1362
. 10.1007/s00158-014-1219-3
108.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
. 10.1080/21693277.2016.1192517
109.
Köksal
,
G.
,
Batmaz
,
İ.
, and
Testik
,
M. C.
,
2011
, “
A Review of Data Mining Applications for Quality Improvement in Manufacturing Industry
,”
Expert Syst. Appl.
,
38
(
10
), pp.
13448
13467
. 10.1016/j.eswa.2011.04.063
110.
Lecun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
. 10.1109/5.726791
111.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
, and
Liu
,
J.
,
2017
, “
Sequential Radial Basis Function Using Support Vector Machine for Expensive Design Optimization
,”
AIAA J.
,
55
(
1
), pp.
214
227
. 10.2514/1.J054832
112.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
. 10.1038/323533a0
113.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
1
), pp.
144
156
. 10.1016/j.jmsy.2018.01.003
114.
Maimon
,
O.
, and
Rokach
,
L.
, eds.,
2010
,
Data Mining and Knowledge Discovery Handbook
,
Springer US
,
Boston, MA
.
115.
Wu
,
X.
,
Zhu
,
X.
,
Wu
,
G.-Q.
, and
Ding
,
W.
,
2014
, “
Data Mining With Big Data
,”
IEEE Trans. Knowl. Data Eng.
,
26
(
1
), pp.
97
107
. 10.1109/TKDE.2013.109
116.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
. 10.1038/nature14539
117.
Topçu
,
İ. B.
, and
Sarıdemir
,
M.
,
2008
, “
Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks and Fuzzy Logic
,”
Comput. Mater. Sci.
,
41
(
3
), pp.
305
311
. 10.1016/j.commatsci.2007.04.009
118.
Tasdemir
,
S.
,
Saritas
,
I.
,
Ciniviz
,
M.
, and
Allahverdi
,
N.
,
2011
, “
Artificial Neural Network and Fuzzy Expert System Comparison for Prediction of Performance and Emission Parameters on a Gasoline Engine
,”
Expert Syst. Appl.
,
38
(
11
), pp.
13912
13923
. 10.1016/j.eswa.2011.04.198
You do not currently have access to this content.