A new active ease-off topography modification approach is proposed to improve the meshing performance of hypoid gears based on a fourth-order predesigned transmission error (PTE) model and a modified error sensitivity analysis method. Ease-off topography modifications that describe local deviations of pinion tooth surfaces can be conducted by converting the fourth-order PTE into equivalent deviations of pinion tooth surfaces. The modified error sensitivity analysis method is developed to investigate the effects of misalignments on the moving velocity of a contact point of a hypoid gear pair. The moving velocity of the contact point can describe transmission error (TE) curve shapes of ease-off tooth surfaces. The ease-off topography modification approach can achieve TE precontrol and modification curvature adjustment of the pinion for stable meshing performance of the hypoid gear pair. Moreover, pinion ease-off tooth surfaces are finished by a five-axis computer numerical control swarf-cutting machine tool. Swarf-cutting tests and TE measurement tests are conducted on hypoid gear pair specimens to demonstrate the feasibility and effectiveness of the proposed methodology.

References

References
1.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2006
, “
Design, Manufacture, Stress Analysis, and Experimental Tests of Low-Noise High Endurance Spiral Bevel Gears
,”
Mech. Mach. Theory
,
41
(
1
), pp.
83
118
.
2.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge
, pp.
679
696
.
3.
Shih
,
Y. P.
, and
Chen
,
S. D.
,
2012
, “
A Flank Correction Methodology for a Five-Axis CNC Gear Profile Grinding Machine
,”
Mech. Mach. Theory
,
47
, pp.
31
45
.
4.
Shih
,
Y. P.
, and
Fong
,
Z. H.
,
2006
, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1294
1302
.
5.
Shih
,
Y. P.
,
2012
, “
Mathematical Model for Face-Hobbed Straight Bevel Gears
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091006
.
6.
Shih
,
Y. P.
, and
Hsieh
,
H. Y.
,
2015
, “
Straight Bevel Gear Generation Using the Dual Interlocking Circular Cutter Cutting Method on a Computer Numerical Control Bevel Gear-Cutting Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021007
.
7.
Fan
,
Q.
,
2006
, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
31
37
.
8.
Fan
,
Q.
,
DaFoe
,
R. S.
, and
Swanger
,
J. W.
,
2008
, “
Higher Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072601
.
9.
Stadtfeld
,
H. J.
, and
Gaiser
,
U.
,
2000
, “
The Ultimate Motion Graph
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
317
322
.
10.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071004
.
11.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2008
, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
11
), pp.
1671
1676
.
12.
Artoni
,
A.
,
Bracci
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2009
, “
Optimization of the Loaded Contact Pattern in Hypoid Gears by Automatic Topography Modification
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011008
.
13.
Artoni
,
A.
,
Gabiccini
,
M.
,
Guiggiani
,
M.
, and
Kahraman
,
A.
,
2011
, “
Multi-Objective Ease-Off Optimization of Hypoid Gears for Their Efficiency, Noise, and Durability Performances
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121007
.
14.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Kolivand
,
M.
,
2013
, “
Ease-Off Based Compensation of Tooth Surface Deviations for Spiral Bevel and Hypoid Gears: Only the Pinion Needs Corrections
,”
Mech. Mach. Theory
,
61
, pp.
84
101
.
15.
Yang
,
Y.
,
Mao
,
S. M.
, and
Kuang
,
Y. H.
,
2016
, “
Pinion Development of Face-Milled Spiral Bevel and Hypoid Gears Based on Contact Attributes
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9
), pp.
2347
2356
.
16.
Kawasaki
,
K.
, and
Tsuji
,
I.
,
2010
, “
Analytical and Experimental Tooth Contact Pattern of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041004
.
17.
Tsuji
,
I.
,
Kawasaki
,
K.
, and
Gunbara
,
H.
,
2013
, “
Tooth Contact Analysis and Manufacture on Multitasking Machine of Large-Sized Straight Bevel Gears With Equi-Depth Teeth
,”
ASME J. Mech. Des.
,
135
(
3
), p.
034504
.
18.
Wang
,
P. Y.
, and
Fong
,
Z. H.
,
2006
, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
457
467
.
19.
Simon
,
V. V.
,
2007
, “
Computer Simulation of Tooth Contact Analysis of Mismatched Spiral Bevel Gears
,”
Mech. Mach. Theory
,
42
, pp.
365
381
.
20.
Simon
,
V. V.
,
2011
, “
Influence of Tooth Modifications on Tooth Contact in Face-Hobbed Spiral Bevel Gears
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1980
1998
.
21.
Simon
,
V. V.
,
2008
, “
Influence of Tooth Errors and Misalignments on Tooth Contact in Spiral Bevel Gears
,”
Mech. Mach. Theory
,
43
, pp.
1253
1267
.
22.
Simon
,
V. V.
,
2009
, “
Design and Manufacture of Spiral Bevel Gears With Reduced Transmission Errors
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041007
.
23.
Lee
,
C. K.
,
2009
, “
Manufacturing Process for a Cylindrical Crown Gear Derive With a Controllable Fourth Order Polynomial Function of Transmission Error
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
3
13
.
24.
Li
,
G.
,
Wang
,
Z. H.
,
Zhu
,
W. D.
, and
Kubo
,
A.
,
2017
, “
A Function-Oriented Active Form-Grinding Method for Cylindrical Gears Based on Error Sensitivity
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
3019
3031
.
25.
Su
,
J. Z.
,
Fang
,
Z. D.
, and
Cai
,
X. W.
,
2013
, “
Design and Analysis of Spiral Bevel Gears With Seventh-Order Function of Transmission Error
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1310
1316
.
26.
Jiang
,
J. K.
, and
Fang
,
Z. D.
,
2015
, “
Design and Analysis of Modified Cylindrical Gear With a Higher-Order Transmission Error
,”
Mech. Mach. Theory
,
88
, pp.
141
152
.
27.
Jiang
,
J. K.
, and
Fang
,
Z. D.
,
2015
, “
High-Order Tooth Flank Correction for a Helical Gear on a Six-Axis CNC Hob Machine
,”
Mech. Mach. Theory
,
91
, pp.
227
237
.
28.
Wang
,
X. C.
, and
Ghosh
,
S. K.
,
1994
,
Advanced Theories of Hypoid Gears
,
Elsevier
,
Amsterdam
.
29.
Li
,
G.
,
Wang
,
Z. H.
, and
Kubo
,
A.
,
2016
, “
The Modeling Approach of Digital Real Tooth Surfaces of Hypoid Gears Based on Non-Geometric-Feature Segmentation and Interpolation Algorithm
,”
Int. J. Precis. Eng. Manuf.
,
17
(
3
), pp.
281
292
.
30.
Simon
,
V. V.
,
2008
, “
Machine-Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082603
.
31.
Li
,
G.
,
Wang
,
Z. H.
, and
Kubo
,
A.
,
2017
, “
Error-Sensitivity Analysis for Hypoid Gears Using a Real Tooth Surface Contact Model
,”
Proc. Inst. Mech. Eng. C
,
231
(
3
), pp.
507
521
.
32.
Simon
,
V. V.
,
2014
, “
Optimal Tooth Modifications in Face-Hobbed Spiral Bevel Gears to Reduce the Influence of Misalignments on Elastohydrodynamic Lubrication
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071007
.
33.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Guiggiani
,
M.
,
2010
, “
Robust Optimization of the Loaded Contact Pattern in Hypoid Gears With Uncertain Misalignments
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041010
.
34.
Li
,
G.
,
Wang
,
Z. H.
, and
Zhu
,
W. D.
,
2018
, “
Prediction of Surface Wear of Involute Gears Based on Revised Fractal Theory
,”
ASME J. Tribol.
,
141
(
3
), p.
031603
.
You do not currently have access to this content.