A new method is presented for the design of kinematotropic linkages based on 2-DOF kinematic chains that generate more than one surface. As an example of the proposed method, a kinematotropic linkage is obtained by studying a special case of the Bohemian dome which has two different parametrizations constructed by translation of circles and, therefore, two different hybrid kinematic chains can be designed to generate the same Bohemian dome. Each of these hybrid kinematic chains can generate two different surfaces and, thus, can be used in the proposed method. Parametrizations for the secondary surfaces are then obtained and studied. A total of 27 motion branches are found in the configuration space of this kinematotropic linkage. The singularities in the configuration space are further determined using the properties of the surfaces. The resultant linkage offers an explanation of Wholhart’s queer-square linkage other than its original paper folding. As part of the analysis of this example, the relationship between the properties of self-intersections in generated surfaces and the configuration space of the generator linkage is studied for the first time, leading to a description of motion branches related to self-intersections of generated surfaces.

References

References
1.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Design
,
121
(
3
), pp.
375
382
.
2.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory.
,
45
(
12
), pp.
1864
1876
.
3.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages”.
In Recent Advances in Robot Kinematics
,
J.
Lenarčič
and
V.
Parent-Castelli
, eds.,
Portoroz, Slovenia
.
Dordrecht: The Netherlands
, pp.
359
368
.
4.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory.
,
36
(
3
), pp.
743
761
.
5.
Kong
,
X.
,
He
,
X.
, and
Li
,
D.
,
2017
, “
A 6R Single-Loop Overconstrained Spatial Mechanism That Has Two Pairs of Revolute Joints With Intersecting Axes and One Pair of Revolute Joints With Parallel Axes
”.
2017 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
, V05BT08A069.
6.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Geometric Constraint and Mobility Variation of two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Design
,
135
(
1
), p.
8
.
7.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory.
,
74
, pp.
1
9
.
8.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Bifurcated Configurations and Their Variations of an 8-bar Linkage Derived From an 8-Kaleidocycle
,”
Mech. Mach. Theory.
,
121
, pp.
745
754
.
9.
Arponen
,
T.
,
Müller
,
A.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
Apr 2014
, “
Kinematical Analysis of Overconstrained and Underconstrained Mechanisms by Means of Computational Algebraic Geometry
,”
Meccanica
,
49
(
4
), pp.
843
862
.
10.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Design
,
137
(
6
), pp.
10
.
11.
Kong
,
X.
,
2016
, “
Kinematic Analysis of Conventional and Multi-Mode Spatial Mechanisms Using Dual Quaternions
”. In
Proceedings of the ASME 2016 International Design Engineering Technical Conferences
, Vol.
5B
,
Charlotte, NC
, V05BT07A085. Paper Number DETC2016-59194.
12.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory.
,
74
, pp.
188
201
.
13.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory.
,
128
, pp.
628
647
.
14.
Palpacelli
,
M.-C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2018
, “A Family of Non-Overconstrained 3-dof Reconfigurable Parallel Manipulators”.
In Advances in Robot Kinematics 2016
,
J.
Lenarčič
and
J.-P.
Merlet
, eds.,
Springer International Publishing
,
Berlin
, pp.
191
200
.
15.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-Dof Single-Loop Mechanisms
,”
Mech. Mach. Theory.
,
85
, pp.
116
128
.
16.
Kong
,
X.
,
2012
, “
Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes
”. In
Proceedings of the ASME 2012 International Design Engineering Technical Conferences
,
Chicago, IL
, pp.
497
504
. Paper Number DETC2012-70621.
17.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
A Novel Method for Constructing Multi-Mode Deployable Polyhedron Mechanisms Using Symmetric Spatial RRR Compositional Units
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
.
18.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Pérez-Soto
,
G.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), pp.
021029
.
19.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2012
, “A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type,”
Advances in Reconfigurable Mechanisms and Robots I
,
J.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
35
43
.
20.
López-Custodio
,
P. C.
,
Rico
,
J. M.
, and
Cervantes-Sánchez
,
J. J.
,
2017
, “
Local Analysis of Helicoid-Helicoid Intersections in Reconfigurable Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), pp.
031008
.
21.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Line-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), pp.
031002
.
22.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), pp.
031002
0
.
23.
Jenkins
,
E. M.
,
Crossley
,
F. R. E.
, and
Hunt
,
K. H.
,
1969
, “
Gross Motion Attributes of Certain Spatial Mechanisms
,”
J. Eng. Ind.
,
91
(
1
), pp.
83
90
.
24.
Torfason
,
L. E.
, and
Crossley
,
F. R. E.
,
1971
, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms
”. In
Proceedings of the 3rd World Congress for the Theory of Machines and Mechanisms
, Vol.
B
,
Kupari, Yugoslavia
, pp.
247
258
. Paper B-20.
25.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
J. Eng. Ind.
,
95
(
2
), pp.
455
464
.
26.
Fichter
,
E. F.
, and
Hunt
,
K. H.
,
1975
, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory.
,
10
(
2–3
), pp.
167
176
.
27.
Shrivastava
,
A. K.
, and
Hunt
,
K. H.
,
1973
, “
Dwell Motion From Spatial Linkages
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
511
518
.
28.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2005
, “
Dimensioning a Constrained Parallel Robot to Reach a set of Task Positions
”. In
Proceeding of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, pp.
4026
4030
.
29.
Liu
,
Y.
, and
Zsombor-Murray
,
P.
,
1995
, “
Intersection Curves Between Quadric Surfaces of Revolution
,”
Trans. Can. Soc. Mech. Eng.
,
19
(
4
), pp.
435
453
.
30.
Tale Masouleh
,
M.
,
Gosselin
,
C.
,
Saadatzi
,
M. H.
,
Kong
,
X.
, and
Taghirad
,
H. D.
,
Feb 2011
, “
Kinematic Analysis of 5-RPUR (3T2R) Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
131
146
.
31.
Gogu
,
G.
,
2009
, “Branching Singularities in Kinematotropic Parallel Mechanisms”.
In Computational Kinematics
,
A.
Kecskeméthy
and
A.
Müller
, eds.,
Springer
,
Berlin
, pp.
341
348
.
32.
Qin
,
Y.
,
Dai
,
J.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory.
,
81
(
11
), pp.
36
53
.
33.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G. I.
, and
Díez-Martínez
,
C. R.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. A/Solids
,
61
, pp.
198
215
.
34.
Rico
,
J. M.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Design
,
125
(
1
), pp.
70
80
.
You do not currently have access to this content.