This paper presents a time-dependent concurrent reliability-based design optimization (TDC-RBDO) method integrating the time-variant B-distance index to improve the confidence level of design results with a small amount of experimental data. The time-variant B-distance index is first constructed using the extreme values of responses. The Hist Loop CDF (HLCDF) algorithm is then presented to calculate the time-variant B-distance index with high computational efficiency. The TDC-RBDO framework is provided by integrating the time-variant B-distance index and time-dependent reliability. The extreme value moment method (EVMM) is implemented to speed up the procedure of the TDC-RBDO. The case of a harmonic reducer is employed to elaborate on the proposed method.

References

References
1.
Wang
,
Z.
,
Zhang
,
X.
,
Huang
,
H. Z.
, and
Mourelatos
,
Z. P.
,
2016
, “
A Simulation Method to Estimate Two Types of Time-Varying Failure Rate of Dynamic Systems
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121404
.
2.
Li
,
Q.
,
Wang
,
C.
, and
Ellingwood
,
B. R.
,
2015
, “
Time-Dependent Reliability of Aging Structures in the Presence of Non-Stationary Loads and Degradation
,”
Struct. Saf.
,
52
(
1
), pp.
132
141
.
3.
Wang
,
Z.
,
Huang
,
H. Z.
, and
Du
,
X.
,
2010
, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.
4.
Zhang
,
R.
, and
Mahadevan
,
S.
,
2003
, “
Bayesian Methodology for Reliability Model Acceptance
,”
Reliab. Eng. Syst. Saf.
,
80
(
1
), pp.
95
103
.
5.
Zhang
,
H.
,
Liu
,
H.
,
Ellingwood
,
B. R.
, and
Rasmussen
,
K. J. R.
,
2018
, “
System Reliabilities of Planar Gravity Steel Frames Designed by the Inelastic Method in AISC 360-10
,”
J. Struct. Eng.
,
144
(
3
), p.
04018011
.
6.
Wang
,
L.
,
Wang
,
X.
,
Su
,
H.
, and
Lin
,
G.
,
2017
, “
Reliability Estimation of Fatigue Crack Growth Prediction via Limited Measured Data
,”
Int. J. Mech. Sci.
,
121
(
2
), pp.
44
57
.
7.
Wang
,
Z.
,
Wang
,
Z.
,
Yu
,
S.
, and
Zhang
,
K.
,
2019
, “
Time-Dependent Mechanism Reliability Analysis Based on Envelope Function and Vine-Copula Function
,”
Mech. Mach. Theory
,
134
(
4
), pp.
667
684
.
8.
Drignei
,
D.
,
2011
, “
Functional ANOVA in Computer Models With Time Series Output
,”
Technometrics
,
52
(
4
), pp.
430
437
.
9.
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1989
, “
Recent Developments in Structural Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
1
(
3
), pp.
137
151
.
10.
Wang
,
L.
,
Ma
,
Y.
,
Yang
,
Y.
, and
Wang
,
X.
,
2019
, “
Structural Design Optimization Based on Hybrid Time-Variant Reliability Measure Under Non-Probabilistic Convex Uncertainties
,”
Appl. Math. Modell.
,
69
(
5
), pp.
330
354
.
11.
Wang
,
L.
,
Wang
,
X.
,
Wu
,
D.
, and
Zhang
,
X.
,
2018
, “
Non-Probabilistic Time-Variant Reliability Assessment (NTRA) for the Active Control of Vibration Systems With Convex Uncertainties
,”
ISA Trans.
,
83
(
12
), pp.
276
289
.
12.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
, “
Time-Dependent Reliability Analysis in Design
,”
Engineering Design Under Uncertainty and Health Prognostics
,
Springer
,
Cham
, pp.
157
186
.
13.
Wang
,
Z.
,
Broccardo
,
M.
, and
Song
,
J.
,
2017
, “
Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis
,”
Struct. Saf.
,
76
(
1
), pp.
51
67
.
14.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
15.
Papaioannou
,
I.
,
Breitung
,
K.
, and
Straub
,
D.
,
2018
, “
Reliability Sensitivity Estimation With Sequential Importance Sampling
,”
Struct. Saf.
,
75
(
11
), pp.
24
34
.
16.
Shayanfar
,
M. A.
,
Barkhordari
,
M. A.
, and
Barkhori
,
M.
,
2018
, “
An Adaptive Directional Importance Sampling Method for Structural Reliability Analysis
,”
Struct. Saf.
,
70
(
1
), pp.
14
20
.
17.
Yun
,
W.
,
Lu
,
Z.
,
Zhang
,
Y.
, and
Jiang
,
X.
,
2018
, “
An Efficient Global Reliability Sensitivity Analysis Algorithm Based on Classification of Model Output and Subset Simulation
,”
Struct. Saf.
,
74
(
9
), pp.
49
57
.
18.
Zhang
,
X.
, and
Chen
,
X.
,
2016
, “
Refined Process Upcrossing Rate Approach for Estimating Probabilistic Wind Load Effects With Consideration of Directionality
,”
J. Struct. Eng.
,
143
(
1
), p.
04016148
.
19.
Li
,
J.
,
Chen
,
J. B.
, and
Fan
,
W.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
4
), pp.
112
131
.
20.
Chen
,
J. B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.
21.
Hu
,
Z.
, and
Du
,
X. P.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
22.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
.
23.
Gnedenko
,
B.
,
Belyayev
,
Y.
, and
Solovyev
,
A.
,
2014
,
Mathematical Methods of Reliability Theory
,
Academic Press
,
New York
.
24.
Van Noortwijk
,
J. M.
,
Van Der Weide
,
J. A.
,
Kallen
,
M. J.
, and
Pandey
,
M. D.
,
2007
, “
Gamma Processes and Peaks-Over-Threshold Distributions for Time-Dependent Reliability
,”
Reliab. Eng. Syst. Saf.
,
92
(
12
), pp.
1651
1658
.
25.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
26.
Li
,
M.
,
Bai
,
G.
, and
Wang
,
Z.
,
2018
, “
Time-Variant Reliability-Based Design Optimization Using Sequential Kriging Modeling
,”
Struct. Multidiscip. Optim.
,
58
(
3
), pp.
1051
1065
.
27.
Wang
,
Y.
, and
Pham
,
H.
,
2012
, “
Modeling the Dependent Competing Risks With Multiple Degradation Processes and Random Shock Using Time-Varying Copulas
,”
IEEE Trans. Reliab.
,
61
(
1
), pp.
13
22
.
28.
Rackwitz
,
R.
,
1993
, “
On the Combination of Non-Stationary Rectangular Wave Renewal Processes
,”
Struct. Saf.
,
13
(
1–2
), pp.
21
28
.
29.
Zayed
,
A.
,
Garbatov
,
Y.
, and
Soares
,
C.
,
2013
, “
Time Variant Reliability Assessment of Ship Structures With Fast Integration Techniques
,”
Probab. Eng. Mech.
,
32
(
2
), pp.
93
102
.
30.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
31.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
32.
Hu
,
Z.
, and
Du
,
X. P.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
33.
Drignei
,
D.
,
Mourelatos
,
Z. P.
,
Pandey
,
V.
, and
Kokkolaras
,
M.
,
2012
, “
Concurrent Design Optimization and Calibration-Based Validation Using Local Domains Sized by Bootstrapping
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100910
.
34.
Li
,
J.
,
Mourelatos
,
Z. P.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Gorsich
,
D. J.
,
2013
, “
Maximizing Design Confidence in Sequential Simulation-Based Optimization
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081004
.
35.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K. L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
.
36.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. B
,
63
(
3
), pp.
425
464
.
37.
Higdon
,
D.
,
Nakhleh
,
C.
,
Gattiker
,
J.
, and
Williams
,
B.
,
2008
, “
A Bayesian Calibration Approach to the Thermal Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2431
2441
.
38.
Hills
,
R. G.
, and
Truncano
,
T. G.
,
2002
, “
Statistical Validation of Engineering and Scientific Models: A Maximum Likelihood Based Metric
,”
SAND2002-1783, Sandia National Laboratories
,
Albuquerque, NM
,
Jan. 1
, TOPICAL.NO. SAND 2002-1783.
39.
Wang
,
Z.
,
Yu
,
S.
,
Chen
,
Y.
, and
Li
,
Y.
,
2018
, “
Robust Design for the Lower Extremity Exoskeleton Under a Stochastic Terrain by Mimicking Wolf Pack Behaviors
,”
IEEE Access
,
6
(
1
), pp.
30714
30725
.
40.
Wang
,
Z.
,
Cheng
,
X.
, and
Liu
,
J.
,
2018
, “
Time-Dependent Concurrent Reliability-Based Design Optimization Integrating Experiment-Based Model Validation
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1523
1531
.
41.
Xi
,
Z.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2012
, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
45
(
1
), pp.
33
52
.
42.
Brandyberry
,
M. D.
,
2008
, “
Thermal Problem Solution Using a Surrogate Model Clustering Technique
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2390
2407
.
43.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
44.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2012
, “
Model Validation Metric and Model Bias Characterization for Dynamic System Responses Under Uncertainty
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago
,
Aug. 12–15
, pp.
1249
1260
.
45.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
(
10
), pp.
179
190
.
46.
Yu
,
S.
,
Wang
,
Z.
, and
Zhang
,
K.
,
2018
, “
Sequential Time-Dependent Reliability Analysis for the Lower Extremity Exoskeleton Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
170
(
2
), pp.
45
52
.
47.
Yu
,
S.
,
Wang
,
Z.
, and
Meng
,
D. B.
,
2018
, “
Time-Variant Reliability Assessment for Multiple Failure Modes and Temporal Parameters
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1705
1717
.
You do not currently have access to this content.