Products evolve over time to satisfy new customer needs, technologies, and markets. The evolution process of products necessarily involves changes in a product structure that might be characterized by inherent evolving properties. Although product evolution has been discussed from various perspectives, the underlying properties of an evolving product structure have not been sufficiently explored from an analytical view. Various empirical and theoretical studies in network science show that real networks representing different types of complex systems are not randomly structured but are characterized by certain properties regardless of their origins. Focusing on the topological universality of real networks, this study aims to reveal the inherent evolving properties of a product structure based on a network science approach through a case study of generational smartphone models. First, the product structure of each generational product is represented as a product structure network. Then, topological characteristics and patterns in each network are analyzed by network measures and motifs. The results show that the product structure networks may follow the universal properties observed in other real networks; the product structure grows as a scale-free network with common building blocks. The findings from this study suggest that the identified properties can be used as a basis to understand and formulate product evolution to obtain design benefits from topological robustness and modularity.

References

References
1.
Darwin
,
C.
,
1859
,
On the Origins of Species by Means of Natural Selection
,
John Murray
,
London
.
2.
Hall
,
B. K.
,
2008
,
Strickberger’s Evolution
,
Jones & Bartlett Learning
,
SudburyMA
.
3.
Betz
,
F.
,
1993
,
Strategic Technology Management
,
McGraw-Hill
,
New York
.
4.
Bower
,
J. L.
, and
Christensen
,
C. M.
,
1995
, “
Disruptive Technologies: Catching the Wave
,”
Harv. Bus. Rev.
,
73
(
1
), pp.
43
53
.
5.
Phaal
,
R.
, and
Muller
,
G.
,
2009
, “
An Architectural Framework for Roadmapping: Towards Visual Strategy
,”
Technol. Forecast. Soc. Change
,
76
(
1
), pp.
39
49
.
6.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
7.
Shao
,
W. P.
,
Hao
,
Y. P.
, and
Zeng
,
P. F.
,
2012
, “
Study on Product Family Architecture Dynamic Evolution Based on Product Instances
,”
Adv. Mater. Res.
,
472–475
, pp.
2612
2616
.
8.
Le
,
Q.
,
Sha
,
Z.
, and
Panchal
,
J. H.
,
2014
, “
A Generative Network Model for Product Evolution
,”
J. Comput. Inf. Sci. Eng.
14
(
1
), pp.
011003-1
011003-12
.
9.
Sanderson
,
S.
, and
Uzumeri
,
M.
,
1995
, “
Managing Product Families: The Case of the Sony Walkman
,”
Res. Policy
,
24
(
5
), pp.
761
782
.
10.
Foster
,
R. N.
,
1986
, “
Working the S-Curve: Assessing Technological Threats
,”
Res. Manage.
,
29
(
4
), pp.
17
20
.
11.
Payson
,
S.
,
1997
, “
Product Evolution and the Classification of Business Interest in Scientific Advances
,”
Knowl. Technol. Policy
,
9
(
4
), pp.
3
26
.
12.
Wheelwright
,
S. C.
, and
Sasser
,
W. E.
, Jr.
,
1989
, “
The New Product Development Map
,”
Harv. Bus. Rev.
,
67
(
3
), pp.
112
125
.
13.
Phaal
,
R.
,
Farrukh
,
C. J.
, and
Probert
,
D. R.
,
2004
, “
Technology Roadmapping—A Planning Framework for Evolution and Revolution
,”
Technol. Forecast. Soc. Change
,
71
(
1
), pp.
5
26
.
14.
Rinne
,
M.
,
2004
, “
Technology Roadmaps: Infrastructure for Innovation
,”
Technol. Forecast. Soc. Change
,
71
(
1
), pp.
67
80
.
15.
Shibata
,
T.
,
Yano
,
M.
, and
Kodama
,
F.
,
2005
, “
Empirical Analysis of Evolution of Product Architecture: Fanuc Numerical Controllers From 1962 to 1997
,”
Res. Policy
,
34
(
1
), pp.
13
31
.
16.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
17.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
J. Mech. Des.
,
126
(
5
), pp.
788
797
.
18.
Cheng
,
H.
, and
Chu
,
X.
,
2012
, “
A Network-Based Assessment Approach for Change Impacts on Complex Product
,”
J. Intell. Manuf.
,
23
(
4
), pp.
1419
1431
.
19.
Liu
,
F.
,
Qi
,
G.
, and
Yang
,
Q.
,
2006
, “
Forecast Method for Used Number of Parts and Components Based on Complex Network
,”
Front. Mech. Eng. China
,
1
(
4
), pp.
479
484
.
20.
Liu
,
F.
,
Song
,
S.
, and
Deng
,
X.
,
2008
, “
Research on Evolving Rule of Part Relation Network of Product Family
,”
Int. J. Mater. Struct. Integrity
,
1
(
4
), pp.
334
343
.
21.
Steward
,
D. V.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
EM-28
(
3
), pp.
71
74
.
22.
Eppinger
,
S. D.
,
Whitney
,
D. E.
,
Smith
,
R. P.
, and
Gebala
,
D. A.
,
1994
, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
(
1
), pp.
1
13
.
23.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
24.
Barabási
,
A.-L.
,
2016
, “The Scale-Free Property,”
Network Science
,
A.-L.
Barabási
, ed.,
Cambridge University Press
,
Cambridge
.
25.
Barabási
,
A.-L.
,
2009
, “
Scale-Free Networks: A Decade and Beyond
,”
Science
,
325
(
5939
), pp.
412
413
.
26.
Albert
,
R.
, and
Barabási
,
A.-L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), pp.
47
97
.
27.
Cui
,
L.
,
Kumara
,
S. T.
, and
Albert
,
R.
,
2010
, “
Complex Networks: An Engineering View
,”
IEEE Circuits Syst. Mag.
,
10
(
3
), pp.
10
25
.
28.
Otto
,
K. N.
, and
Wood
,
K. L.
,
1998
, “
Product Evolution: A Reverse Engineering and Redesign Methodology
,”
Res. Eng. Des.
,
10
(
4
), pp.
226
243
.
29.
Payson
,
S.
,
1995
, “
Product Evolution: What It Is and How It Can Be Measured
,”
East. Econ. J.
,
21
(
2
), pp.
247
262
.
30.
Christensen
,
C.
,
1997
, “
Patterns in the Evolution of Product Competition
,”
Eur. Manage. J.
,
15
(
2
), pp.
117
127
.
31.
Orbach
,
Y.
, and
Fruchter
,
G. E.
,
2011
, “
Forecasting Sales and Product Evolution: The Case of the Hybrid/Electric Car
,”
Technol. Forecast. Soc. Change
,
78
(
7
), pp.
1210
1226
.
32.
Kivi
,
A.
,
Smura
,
T.
, and
Töyli
,
J.
,
2012
, “
Technology Product Evolution and the Diffusion of New Product Features
,”
Technol. Forecast. Soc. Change
,
79
(
1
), pp.
107
126
.
33.
Helfat
,
C. E.
, and
Raubitschek
,
R. S.
,
2000
, “
Product Sequencing: Co-Evolution of Knowledge, Capabilities and Products
,”
Strateg. Manage. J.
,
21
(
10–11
), pp.
961
979
.
34.
Carvalho
,
M. M.
,
Fleury
,
A.
, and
Lopes
,
A. P.
,
2013
, “
An Overview of the Literature on Technology Roadmapping (TRM): Contributions and Trends
,”
Technol. Forecast. Soc. Change
,
80
(
7
), pp.
1418
1437
.
35.
Geum
,
Y.
,
Lee
,
S.
,
Kang
,
D.
, and
Park
,
Y.
,
2011
, “
Technology Roadmapping for Technology-Based Product–Service Integration: A Case Study
,”
J. Eng. Technol. Manage.
,
28
(
3
), pp.
128
146
.
36.
Wright
,
I. C.
,
1997
, “
A Review of Research Into Engineering Change Management: Implications for Product Design
,”
Des. Stud.
,
18
(
1
), pp.
33
42
.
37.
Morris
,
A.
,
Halpern
,
M.
,
Setchi
,
R.
, and
Prickett
,
P.
,
2016
, “
Assessing the Challenges of Managing Product Design Change Through-Life
,”
J. Eng. Des.
,
27
(
1–3
), pp.
25
49
.
38.
Shankar
,
P.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
39.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P. J.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
J. Mech. Des.
,
131
(
8
), pp.
1
14
.
40.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
.
41.
Danilovic
,
M.
, and
Browning
,
T. R.
,
2007
, “
Managing Complex Product Development Projects With Design Structure Matrices and Domain Mapping Matrices
,”
Int. J. Project Manage.
,
25
(
3
), pp.
300
314
.
42.
Pasqual
,
M. C.
, and
de Weck
,
O. L.
,
2012
, “
Multilayer Network Model for Analysis and Management of Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
305
328
.
43.
Tang
,
D.-B.
,
Yin
,
L.-L.
,
Wang
,
Q.
,
Ullah
,
I.
,
Zhu
,
H.-H.
, and
Leng
,
S.
,
2016
, “
Workload-Based Change Propagation Analysis in Engineering Design
,”
Concurr. Eng.
,
24
(
1
), pp.
17
34
.
44.
Barabási
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.
45.
iFixit
, “
Teardowns
,” Accessed December 8, 2016, see https://www.ifixit.com/Teardown
46.
TechInsights
, “
Blogs
,” Accessed December 8, 2016, see http://www.techinsights.com/about-techinsights/overview/blog/
47.
ElectronicPRODUCTS
, “
Teardown
,” Accessed December 8, 2016, see https://www.electronicproducts.com/WhatsInside.aspx
48.
iFixit
,
2016
, “
Apple iPhone Repair
,” Accessed December 8, 2016, see www.ifixit.com/Device/iPhone
49.
Mrvar
,
A.
, and
Ljubljana
,
V. B.
,
2017
, “
Programs for Analysis and Visualization of Very Large Networks—Reference Manual: List of Commands With Short Explanation Version 5.02
,” Accessed October 28, 2017, see http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf
50.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.
51.
Shen-Orr
,
S. S.
,
Milo
,
R.
,
Mangan
,
S.
, and
Alon
,
U.
,
2002
, “
Network Motifs in the Transcriptional Regulation Network of Escherichia coli
,”
Nat. Genet.
,
31
(
1
), pp.
64
68
.
52.
Milo
,
R.
,
Shen-Orr
,
S.
,
Itzkovitz
,
S.
,
Kashtan
,
N.
,
Chklovskii
,
D.
, and
Alon
,
U.
,
2002
, “
Network Motifs: Simple Building Blocks of Complex Networks
,”
Science
,
298
(
5594
), pp.
824
827
.
53.
Yeang
,
C.-H.
,
Huang
,
L.-C.
, and
Liu
,
W.-C.
,
2012
, “
Recurrent Structural Motifs Reflect Characteristics of Distinct Networks
,”
Proceedings of 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
,
Istanbul
,
Aug. 26–29
, pp.
551
557
.
54.
Wernicke
,
S.
, and
Rasche
,
F.
,
2006
, “
FANMOD: A Tool for Fast Network Motif Detection
,”
Bioinformatics
,
22
(
9
), pp.
1152
1153
.
55.
Wernicke
,
S.
,
2005
, “
A Faster Algorithm for Detecting Network Motifs
,”
Proceedings of 5th International Workshop on Algorithms in Bioinformatics
,
Mallorca
,
Oct. 3–6
, pp.
165
177
.
56.
Clauset
,
A.
,
Shalizi
,
C. R.
, and
Newman
,
M. E.
,
2009
, “
Power-Law Distributions in Empirical Data
,”
SIAM Rev.
,
51
(
4
), pp.
661
703
.
57.
Reap
,
J.
,
Baumeister
,
D.
, and
Bras
,
B.
,
2005
, “
Holism, Biomimicry and Sustainable Engineering
,”
Proceedings of ASME 2005 International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–11
, pp.
423
431
.
58.
Jeong
,
H.
,
Tombor
,
B.
,
Albert
,
R.
,
Oltvai
,
Z. N.
, and
Barabási
,
A.-L.
,
2000
, “
The Large-Scale Organization of Metabolic Networks
,”
Nature
,
407
(
6804
), pp.
651
654
.
59.
Jeong
,
H.
,
Mason
,
S. P.
,
Barabási
,
A.-L.
, and
Oltvai
,
Z. N.
,
2001
, “
Lethality and Centrality in Protein Networks
,”
Nature
,
411
(
6833
), pp.
41
42
.
60.
Centola
,
D.
,
2008
, “
Failure in Complex Social Networks
,”
J. Math. Sociol.
,
33
(
1
), pp.
64
68
.
61.
Perc
,
M.
,
2009
, “
Evolution of Cooperation on Scale-Free Networks Subject to Error and Attack
,”
New J. Phys.
,
11
(
3
), pp.
033027-1
033027-8
.
62.
Albert
,
R.
,
Jeong
,
H.
, and
Barabási
,
A.-L.
,
2000
, “
Error and Attack Tolerance of Complex Networks
,”
Nature
,
406
(
6794
), pp.
378
382
.
63.
Albert
,
R.
,
Albert
,
I.
, and
Nakarado
,
G. L.
,
2004
, “
Structural Vulnerability of the North American Power Grid
,”
Phys. Rev. E
,
69
(
2
), pp.
025103-1
025103-
4
.
64.
Thadakamaila
,
H. P.
,
Raghavan
,
U. N.
,
Kumara
,
S.
, and
Albert
,
R.
,
2004
, “
Survivability of Multiagent-Based Supply Networks: A Topological Perspective
,”
IEEE Intell. Syst.
,
19
(
5
), pp.
24
31
.
65.
iFixit
,
2015
, “
iPhone 6s Plus Teardown
,” Accessed December 8, 2016, see www.ifixit.com/Teardown/iPhone+6s+Plus+Teardown/48171
You do not currently have access to this content.