Customers post online reviews at any time. With the timestamp of online reviews, they can be regarded as a flow of information. With this characteristic, designers can capture the changes in customer feedback to help set up product improvement strategies. Here, we propose an approach for capturing changes in user expectation on product affordances based on the online reviews for two generations of products. First, the approach uses a rule-based natural language processing method to automatically identify and structure product affordances from review text. Then, inspired by the Kano model which classifies preferences of product attributes in five categories, conjoint analysis is used to quantitatively categorize the structured affordances. Finally, changes in user expectation can be found by applying the conjoint analysis on the online reviews posted for two successive generations of products. A case study based on the online reviews of Kindle e-readers downloaded from amazon.com shows that designers can use our proposed approach to evaluate their product improvement strategies for previous products and develop new product improvement strategies for future products.

References

References
1.
Jiménez
,
F. R.
, and
Mendoza
,
N. A.
,
2013
, “
Too Popular to Ignore: The Influence of Online Reviews on Purchase Intentions of Search and Experience Products
,”
J. Interact. Mark.
,
27
(
3
), pp.
226
235
.
2.
Gao
,
J.
,
Zhang
,
C.
,
Wang
,
K.
, and
Ba
,
S.
,
2012
, “
Understanding Online Purchase Decision Making: The Effects of Unconscious Thought, Information Quality, and Information Quantity
,”
Decis. Support Syst.
,
53
(
4
), pp.
772
781
.
3.
Kim
,
H.-W.
, and
Gupta
,
S.
,
2009
, “
A Comparison of Purchase Decision Calculus Between Potential and Repeat Customers of an Online Store
,”
Decis. Support Syst.
,
47
(
4
), pp.
477
487
.
4.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2013
, “
Fad or Here to Stay: Predicting Product Market Adoption and Longevity Using Large Scale, Social Media Data
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
American Society of Mechanical Engineers
,
New York
, p.
V02BT02A012
.
5.
Zhan
,
J.
,
Loh
,
H. T.
, and
Liu
,
Y.
,
2009
, “
Gather Customer Concerns From Online Product Reviews—A Text Summarization Approach
,”
Expert Syst. Appl.
,
36
(
2
), pp.
2107
2115
.
6.
Mata
,
I.
,
Fadel
,
G.
, and
Mocko
,
G.
,
2015
, “
Toward Automating Affordance-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
3
), pp.
297
305
.
7.
He
,
L.
,
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
J.
, and
Yannou
,
B.
2010
, “
A Framework for Choice Modeling in Usage Context-Based Design
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
American Society of Mechanical Engineers
,
New York
, pp.
265
276
.
8.
Ravi
,
K.
, and
Ravi
,
V.
,
2015
, “
A survey on Opinion Mining and Sentiment Analysis: Tasks, Approaches and Applications
,”
Knowl.-Based Syst.
,
89
, pp.
14
46
.
9.
Liu
,
B.
,
2010
, “Sentiment Analysis and Subjectivity,”
Handbook of Natural Language Processing
,
2nd ed
,
N.
Indurkhya
, and
F.
Damerau
, eds.,
Chapman and Hall/CRC
,
London
, pp.
627
666
.
10.
Liu
,
Y.
,
Jin
,
J.
,
Ji
,
P.
,
Harding
,
J. A.
, and
Fung
,
R. Y. K.
,
2013
, “
Identifying Helpful Online Reviews: A Product Designer’s Perspective
,”
Comput. Aided Des.
,
45
(
2
), pp.
180
194
.
11.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2014
, “
Discovering Next Generation Product Innovations by Identifying Lead User Preferences Expressed Through Large Scale Social Media Data
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, New York
American Society of Mechanical Engineers
,
New York
, p.
V01BT02A008
.
12.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
),
031003
.
13.
Jin
,
J.
,
Ji
,
P.
, and
Gu
,
R.
,
2016
, “
Identifying Comparative Customer Requirements From Product Online Reviews for Competitor Analysis
,”
Eng. Appl. Artif. Intell.
,
49
, pp.
61
73
.
14.
Zhang
,
H.
,
Sekhari
,
A.
,
Ouzrout
,
Y.
, and
Bouras
,
A.
,
2016
, “
Jointly Identifying Opinion Mining Elements and Fuzzy Measurement of Opinion Intensity to Analyze Product Features
,”
Eng. Appl. Artif. Intell.
,
47
, pp.
122
139
.
15.
Qi
,
J.
,
Zhang
,
Z.
,
Jeon
,
S.
, and
Zhou
,
Y.
,
2016
, “
Mining Customer Requirements From Online Reviews: A Product Improvement Perspective
,”
Inf. Manag.
,
53
(
8
), pp.
951
963
.
16.
De Weck
,
O. L.
,
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2012
, “
Investigating Relationships and Semantic Sets Amongst System Lifecycle Properties (Ilities)
,”
Third International Engineering Systems Symposium, CESUN 2012
,
Delft, The Netherlands
,
June 18–20
.
17.
Shu
,
L.
,
Srivastava
,
J.
,
Chou
,
A.
, and
Lai
,
S.
,
2015
, “
Three Methods for Identifying Novel Affordances
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
3
), pp.
267
279
.
18.
Jin
,
W.
,
Ho
,
H. H.
, and
Srihari
,
R. K.
,
2009
, “
A Novel Lexicalized HMM-Based Learning Framework for Web Opinion Mining
,”
Proceedings of the 26th Annual International Conference on Machine Learning
,
Montreal, QC
, June 14–18
.
19.
Kang
,
Y.
, and
Zhou
,
L.
,
2017
, “
RubE: Rule-Based Methods for Extracting Product Features From Online Consumer Reviews
,”
Inf. Manag.
,
54
(
2
), pp.
166
176
.
20.
Suryadi
,
D.
, and
Kim
,
H.
,
2016
, “
Identifying the Relations Between Product Features and Sales Rank From Online Reviews
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
New York
, p.
V02AT03A015
.
21.
Min
,
H.
,
Yun
,
J.
, and
Geum
,
Y.
,
2018
, “
Analyzing Dynamic Change in Customer Requirements: An Approach Using Review-Based Kano Analysis
,”
Sustainability
,
10
(
3
), p.
746
.
22.
Maier
,
J. R.
, and
Fadel
,
G. M
,
2006
, “Understanding the Complexity of Design,”
Complex Engineered Systems
,
A.
Minai
, and
Y.
Bar-Yam
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
122
140
.
23.
Maier
,
J. R.
, and
Fadel
,
G. M.
,
2009
, “
Affordance-Based Design Methods for Innovative Design, Redesign and Reverse Engineering
,”
Res. Eng. Des.
,
20
(
4
), p.
225
.
24.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2012
, “
Representational Affordances in Design, With Examples From Analogy Making and Optimization
,”
Res. Eng. Des.
,
23
(
3
), pp.
235
249
.
25.
Kannengiesser
,
U.
, and
Gero
,
J. S.
,
2012
, “
A Process Framework of Affordances in Design
,”
Des. Issues
,
28
(
1
), pp.
50
62
.
26.
Hu
,
J.
, and
Fadel
,
G. M.
2012
, “
Categorizing Affordances for Product Design
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
New York
, pp.
325
339
.
27.
Kano
,
N.
,
1984
, “
Attractive Quality and Must-Be Quality
,”
Hinshitsu (Qual. J. Jpn. Soc. Qual. Cont.)
,
14
, pp.
39
48
.
28.
Green
,
P. E.
, and
Srinivasan
,
V.
,
1978
, “
Conjoint Analysis in Consumer Research: Issues and Outlook
,”
J. Consum. Res.
,
5
(
2
), pp.
103
123
.
29.
Green
,
P. E.
,
Carroll
,
J. D.
, and
Goldberg
,
S. M.
,
1981
, “
A General Approach to Product Design Optimization via Conjoint Analysis
,”
J. Mark.
, pp.
17
37
.
30.
Yannou
,
B.
,
Yvars
,
P.-A.
,
Hoyle
,
C.
, and
Chen
,
W.
,
2013
, “
Set-Based Design by Simulation of Usage Scenario Coverage
,”
J. Eng. Des.
,
24
(
8
), pp.
575
603
.
31.
Hou
,
T.
,
Yannou
,
B.
,
Leroy
,
Y.
,
Poirson
,
E.
,
Mata
,
I.
, and
Fadel
,
G.
,
2017,
Identifying Affordances From Online Product Reviews
,”
Proceedings of the International Conference on Engineering Design (ICED)
,
Vancouver, Canada
.
32.
Schütte
,
S.
,
2005
,
Engineering Emotional Values in Product Design: Kansei ENGineering in Development
,
Institutionen för konstruktions-och produktionsteknik
,
Linköping, Sweden
.
33.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2013
, “
Eliciting User Perceptions Using Assessment Tests Based on an Interactive Genetic Algorithm
,”
ASME J. Mech. Des.
,
135
(
3
),
031004
.
34.
Petiot
,
J.-F.
,
Salvo
,
C.
,
Hossoy
,
I.
,
Papalambros
,
P. Y.
, and
Gonzalez
,
R.
,
2008
, “
A Cross-Cultural Study of Users’ Craftsmanship Perceptions in Vehicle Interior Design
,”
Int. J. Prod. Dev.
,
7
(
1–2
), pp.
28
46
.
35.
Poirson
,
E.
,
Petiot
,
J.-F.
, and
Gilbert
,
J.
,
2007
, “
Integration of User Perceptions in the Design Process: Application to Musical Instrument Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1206
1214
.
36.
Wang
,
M.
, and
Chen
,
W.
,
2015
, “
A Data-Driven Network Analysis Approach to Predicting Customer Choice Sets for Choice Modeling in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), 071410.
37.
Wang
,
M.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
Y.
,
2015
, “
Analyzing and Predicting Heterogeneous Customer Preferences in China’s Auto Market Using Choice Modeling and Network Analysis
,”
SAE Int. J. Mater. Manuf.
,
8
(
3
), pp.
668
677
.
38.
Harrell
,
F. E.
,
2015
, “Ordinal Logistic Regression,”
Regression Modeling Strategies
,
P.
Diggle
,
U.
Gather
, and
S.
Zeger
, eds.,
Springer
,
New York
, pp.
311
325
.
39.
Wamba
,
S. F.
,
Akter
,
S.
,
Edwards
,
A.
,
Chopin
,
G.
, and
Gnanzou
,
D.
,
2015
, “
How ‘Big Data’ can Make Big Impact: Findings From a Systematic Review and a Longitudinal Case Study
,”
Int. J. Prod. Econ.
,
165
, pp.
234
246
.
You do not currently have access to this content.