This paper presents a novel design of soft arm with triplet spiral balloons weaving and a shape memory polymer (SMP) backbone mechanism, which enables dexterous actuation and an additional variable stiffness function. The soft arm is aimed for assisting minimally invasive surgery (MIS). The triplet spiral balloons, which are actuated by pressure air, are woven helically around the SMP backbone, covered by a rubber sheath. This structure gives the soft arm a wide range of actuation, which allows it to reach the target without damaging surrounding tissues blocking its way. The SMP backbone, whose stiffness changes with the temperature, gives the arm the ability of shape holding. Temperature control of the SMP backbone is realized by the electric wire and cooling channels. A prototype is manufactured and a set of experiments is conducted with the aim of assessing the performance of variable stiffness and actuation. The effects of different loads and pressures on trajectory of the arm are evaluated together with the force-deflection curves. The prototype has also been validated with abdominal phantom, demonstrating the potential clinical value of the system.

References

References
1.
Kim
,
Y. H.
,
Park
,
Y. J.
,
In
,
H. K.
,
Chang
,
W. J.
, and
Cho
,
K. J.
,
2016
, “
Design Concept of Hybrid Instrument for Laparoscopic Surgery and Its Verification Using Scale Model Test
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
142
153
.
2.
Zuo
,
S.
, and
Wang
,
S.
,
2016
, “
Current and Emerging Robotic Assisted Intervention for Notes
,”
Expert Rev. Med. Devices
,
13
(
12
),
1095
1105
.
3.
Quaglia
,
C.
,
Petroni
,
G.
,
Niccolini
,
M.
,
Caccavaro
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2014
, “
Design of a Compact Robotic Manipulator for Single-Port Laparoscopy
,”
ASME J. Mech. Des.
,
136
,
105001
.
4.
Liu
,
B.
,
Zhang
,
A.
,
Liu
,
J.
,
Han
,
Z.
, and
Xie
,
T.
,
2018
, “
Design and Evaluation of a Novel Rotatable One-Element Snake Bone for NOTES
,”
ASME J. Med. Devices
,
12
,
021006
.
5.
Sarli
,
N.
,
Del Giudice
,
G.
,
De
,
S.
,
Dietrich
,
M. S.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2018
, “
Preliminary PorcineIn Vivo Evaluation of a Telerobotic System for Transurethral Bladder Tumor Resection and Surveillance
,”
J. Endourol.
,
32
, pp.
516
522
.
6.
Swaney
,
P. J.
,
Mahoney
,
A. W.
,
Hartley
,
B. I.
,
Remirez
,
A. A.
,
Lamers
,
E.
,
Feins
,
R. H.
,
Alterovitz
,
R.
, and
Webster
,
R. J.
,
2017
, “
Toward Transoral Peripheral Lung Access: Combining Continuum Robots and Steerable Needles
,”
J. Med. Robot. Res.
,
02
,
1750001
.
7.
Vitiello
,
V.
,
Lee
,
S. L.
,
Cundy
,
T. P.
, and
Yang
,
G. Z.
,
2013
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
8.
Peters
,
B. S.
,
Armijo
,
P. R.
,
Krause
,
C.
,
Choudhury
,
S. A.
, and
Oleynikov
,
D.
,
2018
, “
Review of Emerging Surgical Robotic Technology
,”
Surg. Endosc.
,
32
, pp.
1636
1655
.
9.
Russo
,
S.
,
Ranzani
,
T.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2017
, “
An Additive Millimeter-Scale Fabrication Method for Soft Biocompatible Actuators and Sensors
,”
Adv. Mater. Technol.
,
2
,
1700135
.
10.
Zuo
,
S.
,
Hughes
,
M.
, and
Yang
,
G. Z.
,
2017
, “
Flexible Robotic Scanning Device for Intraoperative Endomicroscopy in MIS
,”
IEEE/ASME Trans. Mechatron.
,
22
, pp.
1728
1735
.
11.
Moses
,
M. S.
,
Murphy
,
R. J.
,
Kutzer
,
M. D.
, and
Armand
,
M.
,
2015
, “
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
,”
IEEE/ASME Trans. Mechatron
,
20
(
6
), pp.
2876
2889
.
12.
Lakhal
,
O.
,
Melingui
,
A.
, and
Merzouki
,
R.
,
2016
, “
Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1326
1335
.
13.
Robinson
,
R. M.
,
Kothera
,
C. S.
,
Sanner
,
R. M.
, and
Wereley
,
N. M.
,
2016
, “
Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
55
68
.
14.
Turkseven
,
M.
, and
Ueda
,
J.
,
2017
, “
An Asymptotically Stable Pressure Observer Based on Load and Displacement Sensing for Pneumatic Actuators with Long Transmission Lines
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
681
692
.
15.
Kang
,
R.
,
Guo
,
Y.
,
Chen
,
L.
,
Branson
,
D. T.
, III
, and
Dai
,
J. S.
,
2016
, “
Design of a Pneumatic Muscle Based Continuum Robot with Embedded Tendons
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
751
761
.
16.
Cianchetti
,
M.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Falco
,
I. D.
,
Laschi
,
C.
, and
Menciassi
,
A.
,
2013
, “
STIFF-FLOP Surgical Manipulator: Mechanical Design and Experimental Characterization of the Single Module
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3576
3581
.
17.
Zhu
,
M.
,
Xu
,
W.
, and
Cheng
,
L.
,
2017
, “
Esophageal Peristaltic Control of a Soft-Bodied Swallowing Robot by Central Pattern Generator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
91
98
.
18.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C. D.
,
2008
, “
Optimal, Model-Based Design of Soft Robotic Manipulators
,”
ASME J. Mech. Des.
,
130
, pp.
091402
.
19.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
20.
Loeve
,
A.
,
Breedveld
,
P.
, and
Dankelman
,
J.
,
2010
, “
Scopes too Flexible…and Too Stiff
,”
IEEE Pulse
,
1
(
3
), pp.
26
41
.
21.
Loeve
,
A. J.
,
Plettenburg
,
D. H.
,
Breedveld
,
P.
, and
Dankelman
,
J.
,
2012
, “
Endoscope Shaft-Rigidity Control Mechanism: ‘FORGUIDE’
,”
IEEE Trans. Biomed. Eng.
,
59
, pp.
542
551
.
22.
Degani
,
A.
,
Tully
,
S.
,
Zubiate
,
B.
, and
Choset
,
H.
,
2012
, “
Over-Tube Apparatus for Increasing the Capabilities of an Articulated Robotic Probe
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, USA
,
May 14–18
, pp.
3533
3534
.
23.
Horgan
,
S.
,
Thompson
,
K.
,
Talamini
,
M.
,
Ferreres
,
A.
,
Jacobsen
,
G.
,
Spaun
,
G.
,
Cullen,
and
J.
,
Swanstrom
,
L.
,
2011
, “
Clinical Experience with a Multifunctional, Flexible Surgery System for Endolumenal, Single-Port, and Notes Procedures
,”
Surg. Endosc.
,
25
(
2
), pp.
586
592
.
24.
Yagi
,
A.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Liao
,
H.
, and
Dohi
,
T.
,
2006
, “
Rigid-Flexible Outer Sheath Model Using Slider Linkage Locking Mechanism and Air Pressure for Endoscopic Surgery
,”
Proceedings of the Medical Image Computing and Computer Assisted Intervention (MICCAI)
,
Copenhagen, Denmark
,
Oct. 1–6
, pp.
503
510
.
25.
Zuo
,
S.
,
Yamanaka
,
N.
,
Sato
,
I.
,
Masamune
,
K.
,
Liao
,
H.
,
Matsumiya
,
K.
, and
Dohi
,
T.
,
2008
, “MRI Compatible Rigid and Flexible Outer Sheath Device with Pneumatic Locking Mechanism for Minimally Invasive Surgery,”
Medical Imaging and Augmented Reality – MIAR 2008
, Vol.
5128
,
Springer
,
Berlin
, pp.
210
219
.
26.
Zuo
,
S.
,
Masamune
,
K.
,
Kuwana
,
K.
,
Tomikawa
,
M.
,
Ieiri
,
S.
,
Ohdaira
,
T.
,
Hashizume
,
M.
, and
Dohi
,
T.
2011
, “
Nonmetallic Rigid-Flexible Outer Sheath with Pneumatic Shapelocking Mechanism and Double Curvature Structure
,”
Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI)
,
Toronto, Canada
,
Sept. 18–22
, Vol.
6891
, pp.
169
177
.
27.
Zuo
,
S.
,
Iijima
,
K.
,
Tokumiya
,
T.
, and
Masamune
,
K.
,
2014
, “
Variable Stiffness Outer Sheath with ‘Dragon Skin’ Structure and Negative Pneumatic Shape-Locking
,”
Int. J. Comput. Assist. Radiol. Surg.
,
9
(
5
), pp.
857
865
.
28.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2014
, “
A Stiffness Adjustable Hyper Redundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery
,”
IEEE Trans. Robot.
,
29
(
4
), pp.
1031
1042
.
29.
Cianchetti
,
M.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Nanayakkara
,
T.
,
Althoefer
,
K.
,
Dasgupta
,
P.
, and
Menciassi
,
A.
,
2014
, “
Soft Robotics Technologies to Address Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP Approach
,”
Soft Robot.
,
1
(
2
), pp.
122
131
.
30.
Zhao
,
R.
,
Yao
,
Y.
, and
Luo
,
Y.
,
2016
, “
Development of a Variable Stiffness Over Tube Based on Low-Melting-Point-Alloy for Endoscopic Surgery
,”
J. Med. Devices
,
10
(
2
), pp.
303
310
.
31.
Tonazzini
,
A.
,
Mintchev
,
S.
,
Schubert
,
B.
,
Mazzolai
,
B.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2016
, “
Variable Stiffness Fiber With Self-Healing Capability
,”
Adv. Mater.
,
28
, pp.
10142
10148
.
32.
Cheng
,
N. G.
,
Gopinath
,
A.
,
Wang
,
L.
,
Iagnemma
,
K.
, and
Hosoi
,
A. E.
,
2015
, “
Thermally Tunable, Self-Healing Composites for Soft Robotic Applications
,”
Macromol. Mater. Eng.
,
299
(
11
), pp.
1279
1284
.
33.
Hines
,
L.
,
Arabagi
,
V.
, and
Sitti
,
M.
,
2012
, “
Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
987
990
.
34.
Takashima
,
K.
,
Rossiter
,
J.
, and
Mukai
,
T.
,
2010
, “
Mckibben Artificial Muscle Using Shape-Memory Polymer
,”
Sens. Actuators A Phys.
,
164
(
12
), pp.
116
124
.
35.
Conn
,
A. T.
, and
Rossiter
,
J.
,
2012
, “
Smart Radially Folding Structures
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
968
975
.
36.
Kazuto
,
T.
,
Kazuhiro
,
S.
,
Naohiro
,
M.
,
Seiya
,
S.
,
Toshiro
,
N.
, and
Toshiharu
,
M.
,
2014
, “
Pneumatic Artificial Rubber Muscle Using Shape Memory Polymer Sheet with Embedded Electrical Heating Wire
,”
Smart Mater. Struct.
,
23
(
12
),
125005
.
37.
Shen
,
H.
,
Thompson
,
K.
,
Xu
,
Y.
,
Mark
,
A.
,
Liang
,
F.
,
Gou
,
J.
, and
Mabbott
,
R.
,
2015
, “
Platform for Monitoring and Control of Electrically Actuated Shape Memory Polymer Nanocomposite Structures
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
3212
3222
.
38.
Firouzeh
,
A.
,
Ozmaeian
,
M.
,
Alasty
,
A.
, and
zad
,
A.I.
,
2012
, “
An IPMC-Made Deformable-Ring-Like Robot
,”
Smart. Mater. Struct.
,
21
(
6
), pp.
65011
65021
.
39.
Firouzeh
,
A.
,
Yi
,
S.
,
Hyunchul
,
L.
, and
Paik
,
J.
,
2013
, “
Sensor and Actuator Integrated Low-Profile Robotic Origami
,”
Proceedings of the Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4937
4944
.
40.
Wang
,
A.
, and
Li
,
G.
,
2015
, “
Stress Memory of a Thermoset Shape Memory Polymer
,”
J. Appl. Polym. Sci.
,
132
(
24
),
42112
.
41.
Pulla
,
S. S.
,
Souri
,
M.
,
Karaca
,
H. E.
, and
Charles Lu
,
Y.
,
2015
, “
Characterization and Strain-Energy-Function-Based Modeling of the Thermomechanical Response of Shape-Memory Polymers
,”
J. Appl. Polym. Sci.
,
132
(
18
),
41861
.
42.
Hussain
,
S. A.
,
Ward
,
S.
,
Mahdavipour
,
O.
,
Majumdar
,
R.
, and
Paprotny
,
I.
(
2015
). “
Untethered Microscale Flight: Mechanisms and Platforms for Future MEMS Aerial Microrobotics
,”
SPIE Sensing Technology+ Applications
,
94940F-12
.
43.
Ward
,
S.
,
Foroutan
,
V.
,
Majumdar
,
R.
,
Mahdavipour
,
O.
,
Hussain
,
S. A.
, and
Paprotny
,
I.
,
2015
, “
Towards Microscale Flight: Fabrication, Stability Analysis, and Initial Flight Experiments for 300×300×1.5 Sized Untethered MEMS Microfliers
,”
IEEE Trans. Nanobiosci.
,
14
(
3
), pp.
323
331
.
44.
Dragon skin 20 properties Data Manual
.
2017
. [Online]. Available: https://www.smooth-on.com/products/dragon-skin-20/
45.
Majumdar
,
R.
,
Foroutan
,
V.
, and
Paprotny
,
I.
,
2014
, “
Tactile Sensing and Compliance in MicroStressbot Assemblies
,”
SPIE Defence Security and Sensing 2014
,
Baltimore, MD
,
SPIE Proceedings
, Vol.
9116
.
46.
Foroutan
,
V.
,
Farzami
,
F.
,
Erricolo
,
D.
,
Majumdar
,
R.
, and
Paprotny
,
I.
,
2018
, “
SATC: An Efficient Control Strategy for Assembly of Heterogenous Stress-Engineered MEMS Microrobots
,”
International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
.
47.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
, pp.
205
212
.
48.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Robot.
,
1
(
3
), pp.
213
223
.
49.
Suzumori
,
K.
,
Endo
,
S.
,
Kanda
,
T.
,
Kato
,
N.
, and
Suzuki
,
H.
,
2007
, “
A Bending Pneumatic Rubber Actuator Realizing Soft-Bodied Manta Swimming Robot
,”
2007 IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
.
50.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
51.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Robot. Auton. Syst.
,
73
, pp.
135
143
.
52.
Yang
,
Y.
, and
Chen
,
Y.
,
2016
, “
Novel Design and 3D Printing of Variable Stiffness Robotic Fingers Based on Shape Memory Polymer
,”
2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
IEEE
,
New York
.
53.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2015
, “
Soft Pneumatic Actuator with Adjustable Stiffness Layers for Multi-DoF Actuation
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
,
New York
.
You do not currently have access to this content.