A new one-stage type cycloid drive reducer named China Bearing Reducer (CBR) is designed and its tooth contact analysis is investigated. First, the CAD model is built in SolidWorks and the structure of CBR reducer is introduced. Its advantages and disadvantages are compared with rotor vector (RV) reducer and harmonic drive reducer. Second, the mathematic model of cycloid profile and modified cycloid profile are established based on gear meshing and differential geometry, and the tooth shapes of three different modifications are compared with CBR25 reducer. Third, the conventional TCA method is described and a new TCA method by using discretized points is proposed to calculate transmission error and contact force of cycloid drive. Both the methods are used to compute the unloaded transmission error of CBR25 reducer to compare the computational efficiency. Finally, three different modified methods of tooth profile are investigated by using the new TCA method to calculate transmission error and contact force of CBR25 reducer, and the results show that the negative isometric and negative offset modified method is best for CBR25 reducer to reduce transmission error and contact force. The prototype of CBR25 reducer is manufactured and the transmission error and hysteresis curve are measured by using a testing bench. The results show that the new TCA method can be used to calculate transmission error and help better design the CBR reducer.

References

References
1.
Blanche
,
J. G.
, and
Yang
,
D. C. H.
,
1989
, “
Cycloid Drives with Machining Tolerances
,”
J. Mech. Transm. Autom. Des.
,
111
(
3
), pp.
337
344
.
2.
Yang
,
D. C. H.
, and
Blanche
,
J. G.
,
1990
, “
Design and Application Guidelines for Cycloid Drives With Machining Tolerances
,”
Mech. Mach. Theory
,
25
(
5
), pp.
487
501
.
3.
Hidaka
,
T.
,
Wang
,
H. Y.
,
Ishida
,
T.
,
Matsumoto
,
K.
, and
Hashimoto
,
M.
,
1994
, “
Rotational Transmission Error of K-H-V Planetary Gears with Cycloid Gear: 1st Report, Analytical Method of the Rotational Transmission Error
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
60
(
570
), pp.
645
653
.
4.
Ishida
,
T.
,
Wang
,
H.
,
Hidaka
,
T.
, and
Hashimoto
,
M.
,
1994
, “
Rotational Transmission Error of K-H-V-Type Planetary Gears With Cycloid Gears: 2nd Report, Effects of Manufacturing and Assembly Errors on Rotational Transmission Error
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
60
(
578
), pp.
3510
3517
.
5.
Wang
,
H.
,
Ishida
,
T.
,
Hidaka
,
T.
, and
Hashimoto
,
M.
,
1994
, “
Rotational Transmission Error of K-H-V-Type Planetary Gears With Cycloid Gear: 3rd Report, Mutual Effects of Errors of the Elements on the Rotational Transmission Error
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
60
(
578
), pp.
3518
3525
.
6.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1995
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
.
7.
Li
,
X.
,
He
,
W.
,
Li
,
L.
, and
Schmidt
,
L. C.
,
2004
, “
A New Cycloid Drive With High-Load Capacity and High Efficiency
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
683
686
.
8.
Lai
,
T.-S.
,
2005
, “
Geometric Design of Roller Drives With Cylindrical Meshing Elements
,”
Mech. Mach. Theory
,
40
(
1
), pp.
55
67
.
9.
Shin
,
J. H.
, and
Kwon
,
S. M.
,
2006
, “
On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center
,”
Mech. Mach. Theory
,
41
(
5
), pp.
596
616
.
10.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
413
420
.
11.
Hsieh
,
C. F.
,
2014
, “
The Effect on Dynamics of Using a New Transmission Design for Eccentric Speed Reducers
,”
Mech. Mach. Theory
,
80
(
4
), pp.
1
16
.
12.
Hsieh
,
C. F.
,
2014
, “
Dynamics Analysis of Cycloidal Speed Reducers With Pinwheel and Nonpinwheel Designs
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091008
.
13.
Hsieh
,
C. F.
,
2015
, “
Traditional Versus Improved Designs for Cycloidal Speed Reducers With a Small Tooth Difference: The Effect on Dynamics
,”
Mech. Mach. Theory
,
86
(
2015
), pp.
15
35
.
14.
Meng
,
Y.
,
Wu
,
C.
, and
Ling
,
L.
,
2007
, “
Mathematical Modeling of the Transmission Performance of 2K–H Pin Cycloid Planetary Mechanism
,”
Mech. Mach. Theory
,
42
(
7
), pp.
776
790
.
15.
Gorla
,
C.
,
2008
, “
Theoretical and Experimental Analysis of a Cycloidal Speed Reducer
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112604
.
16.
Sensinger
,
J. W.
,
2010
, “
Unified Approach to Cycloid Drive Profile, Stress, and Efficiency Optimization
,”
ASME J. Mech. Des.
,
132
(
2
), p.
5
.
17.
Sensinger
,
J.
,
2013
, “
Efficiency of High-Sensitivity Gear Trains, Such as Cycloid Drives
,”
ASME J. Mech. Des.
,
135
(
7
), pp.
1
9
.
18.
Blagojevic
,
M.
,
Marjanovic
,
N.
,
Djordjevic
,
Z.
,
Stojanovic
,
B.
, and
Disic
,
A.
,
2011
, “
A New Design of a Two-Stage Cycloidal Speed Reducer
,”
ASME J. Mech. Des.
,
133
(
8
), pp.
85001
85001
.
19.
Chen
,
B. K.
,
Zhong
,
H.
,
Liu
,
J. Y.
,
Li
,
C. Y.
, and
Fang
,
T. T.
,
2012
, “
Generation and Investigation of a New Cycloid Drive With Double Contact
,”
Mech. Mach. Theory
,
49
(
2012
), pp.
270
283
.
20.
Liu
,
J. Y.
,
Chen
,
B. K.
,
Matsumura
,
S.
,
Li
,
C. Y.
, and
Houjoh
,
H.
,
2012
, “
Design of a Novel Cycloid Drive With a Cycloid-arc Gear and Analysis of Its Meshing Characteristic
,”
J. Adv. Mech. Des. Syst. Manuf.
,
6
(
2
), pp.
310
322
.
21.
Liu
,
J. Y.
,
Matsumura
,
S.
,
Chen
,
B.
, and
Houjoh
,
H.
,
2012
, “
Torsional Stiffness Calculation of Double-Enveloping Cycloid Drive
,”
J. Adv. Mech. Des. Syst. Manuf.
,
6
(
1
), pp.
2
14
.
22.
Hong-Liu
,
Y.
,
Jin-hua
,
Y.
,
Xin
,
H.
, and
Ping
,
S.
,
2013
, “
Study on Teeth Profile Modification of Cycloid Reducer Based on Non-Hertz Elastic Contact Analysis
,”
Mech. Res. Commun.
48
(
2013
), pp.
87
92
.
23.
Li
,
S. T.
,
2014
, “
Design and Strength Analysis Methods of the Trochoidal Gear Reducers
,”
Mech. Mach. Theory
,
81
(
2014
), pp.
140
154
.
24.
Lin
,
W.-S.
,
Shih
,
Y.-P.
, and
Lee
,
J.-J.
,
2014
, “
Design of a Two-Stage Cycloidal Gear Reducer With Tooth Modifications
,”
Mech. Mach. Theory
,
79
(
2014
), pp.
184
197
.
25.
Kumar
,
N.
,
Kosse
,
V.
, and
Oloyede
,
A.
,
2016
, “
A New Method to Estimate Effective Elastic Torsional Compliance of Single-Stage Cycloidal Drives
,”
Mech. Mach. Theory
,
105
(
2016
), pp.
185
198
.
26.
Tran
,
T. L.
,
Pham
,
A. D.
, and
Ahn
,
H. J.
,
2016
, “
Lost Motion Analysis of One Stage Cycloid Reducer Considering Tolerances
,”
Int. J. Precis. Eng. Manuf.
,
17
(
8
), pp.
1009
1016
.
27.
Wang
,
J.
,
Luo
,
S.
, and
Su
,
D.
,
2016
, “
Multi-Objective Optimal Design of Cycloid Speed Reducer Based on Genetic Algorithm
,”
Mech. Mach. Theory
,
102
(
2016
), pp.
135
148
.
28.
Xu
,
L.
, and
Yang
,
Y.
,
2016
, “
Dynamic Modeling and Contact Analysis of a Cycloid-pin Gear Mechanism with a Turning arm Cylindrical Roller Bearing
,”
Mech. Mach. Theory
,
104
(
2016
), pp.
327
349
.
29.
Li
,
X.
,
Li
,
C.
,
Wang
,
Y.
,
Chen
,
B.
, and
Lim
,
T.
,
2017
, “
Analysis of a Cycloid Speed Reducer Considering Tooth Profile Modification and Clearance-Fit Output Mechanism
,”
ASME J. Mech. Des.
139
(
3
), p.
033303
.
30.
Han
,
L.
, and
Guo
,
F.
,
2016
, “
Global Sensitivity Analysis of Transmission Accuracy for RV-Type Cycloid-Pin Drive
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1225
1231
.
31.
Pham
,
A. D.
,
Tran
,
T. L.
, and
Ahn
,
H.-J.
,
2017
, “
Hysteresis Curve Analysis of a Cycloid Reducer Using Non-Linear Spring With a Dead Zone
,”
Int. J. Precis. Eng. Manuf.
,
18
(
3
), pp.
375
380
.
32.
Ren
,
Z. Y.
,
Mao
,
S. M.
,
Guo
,
W. C.
, and
Guo
,
Z.
,
2017
, “
Tooth Modification and Dynamic Performance of the Cycloidal Drive
,”
Mech. Syst. Signal Process
,
85
(
2017
), pp.
857
866
.
33.
Lin
,
K.-S.
,
Chan
,
K.-Y.
, and
Lee
,
J.-J.
,
2018
, “
Kinematic Error Analysis and Tolerance Allocation of Cycloidal Gear Reducers
,”
Mech. Mach. Theory
,
124
(
2018
), pp.
73
91
.
34.
Nabtesco
,
2016
,
Precision Reduction Gear RV-E Series/C Series/Original Series
,
Nabtesco Corporation
,
Osaka, Japan
.
35.
Sumitomo Drive Technologies
,
2011
,
FINE Cyclo-Zero Backlash Speed Reducers
,
S. Sumitomo Cyclo Drive Germany GmbH
,
Markt Indersdorf, Germany
.
36.
Fan
,
Q.
, and
Wilcox
,
L.
,
2005
, “
New Developments in Tooth Contact Analysis (TCA) and Loaded TCA for Spiral Bevel and Hypoid Gear Drives
,”
AGMA, Technical Paper No. 05FTM08
, pp.
26
35
.
37.
Litvin
,
F. L.
,
Zhang
,
Y.
, and
Handschuh
,
R. F.
,
1991
, “
Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears
,”
Forum
,
1
(
2
), pp.
1
11
.
38.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Mancó
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
.
39.
Sun
,
X. X.
,
Han
,
L.
,
Ma
,
K.
,
Li
,
L.
, and
Wang
,
J.
,
2018
, “
Lost Motion Analysis of CBR Reducer
,”
Mech. Mach. Theory
,
120
(
2018
), pp.
89
106
.
40.
Yang
,
D. C. H.
, and
Lin
,
J. Y.
,
1987
, “
Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics
,”
J. Mech., Trans. Automation
,
109
(
2
), pp.
189
196
.
This content is only available via PDF.
You do not currently have access to this content.