The structural synthesis of Baranov trusses is still an open problem, although Baranov trusses are widely used in the design and analysis of mechanisms and robots. This paper proposes a systematic method for the structural synthesis of Baranov trusses. First, the definition review and the graph-form representations of Baranov trusses are proposed. Second, seven propositions on structural characteristics of Baranov trusses are concluded. Then, based on the set of constraint equations and a rigid subchain detection algorithm, a systematic method is presented to synthesize the complete set of Baranov trusses with a specified number of links. Finally, the synthesis results of contracted graphs (including valid and rigid contracted graphs) and topological graphs of Baranov trusses with up to 13 links are provided, and the synthesis methods and results between ours and the ones in the existing literature are compared and discussed in detail.

References

References
1.
Yan
,
H. S.
,
1998
,
Creative Design of Mechanical Devices
,
Springer
,
Singapore
.
2.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton
.
3.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
4.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2015
, “
On the Number Synthesis of Kinematic Chains
,”
Mech. Mach. Theory
,
89
(
7
), pp.
128
144
.
5.
Crossley
,
F. R. E.
,
1965
, “
The Permutations of Kinematic Chains of Eight Members or Less From the Graph-Theoretic View Point
,”
Developments in Theoretical and Applied Mechanics
, Vol.
2
,
Pergamon
,
Oxford
, pp.
467
486
.
6.
Dobrjanskyj
,
L.
, and
Freudenstein
,
F.
1967
, “
Some Applications of Graph Theory to the Structural Analysis of Mechanisms
,”
ASME J. Eng. Ind.
,
89B
, pp.
153
158
.
7.
Manolescu
,
N. I.
,
1968
, “
For a United Point of View in the Study of the Structural Analysis of Kinematic Chains and Mechanisms
,”
J. Mech.
,
3
(
3
), pp.
149
169
.
8.
Mruthyunjaya
,
T. S.
,
1979
, “
Structural Synthesis by Transformation of Binary Chains
,”
Mech. Mach. Theory
,
14
(
4
), pp.
221
231
.
9.
Lee
,
H.
, and
Yoon
,
Y.
,
1994
, “
Automatic Method for Enumeration of Complete Set of Kinematic Chains
,”
JSME Int. J.
,
37
(
4
), pp.
812
818
.
10.
Butcher
,
E. A.
, and
Hartman
,
C.
,
2005
, “
Efficient Enumeration and Hierarchical Classification of Planar Simple-Jointed Kinematic Chains: Application to 12- and 14-Bar Single Degree-of-Freedom Chains
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1030
1050
.
11.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a Mckay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
.
12.
Simoni
,
R.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2009
, “
Enumeration of Kinematic Chains and Mechanisms
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
223
(
4
), pp.
1017
1024
.
13.
Ding
,
H. F.
,
Hou
,
F. M.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Synthesis of the Whole Family of Planar 1-DOF Kinematic Chains and Creation of Their Atlas Databases
,”
Mech. Mach. Theory
,
47
(
1
), pp.
1
15
.
14.
Ding
,
H. F.
,
Cao
,
W. A.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
134
(
3
),
031006
.
15.
Ding
,
H. F.
,
Huang
,
P.
,
Liu
,
J. F.
, and
Kecskeméthy
,
A.
,
2013
, “
Automatic Structural Synthesis of the Whole Family of Planar 3-DOF Closed Loop Mechanisms
,”
ASME J. Mech. Robot.
5
(
4
),
041006
.
16.
Ding
,
H. F.
,
Huang
,
P.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2016
, “
Automatic Generation of the Complete Set of Planar Kinematic Chains With up to Six Independent Loops and up to 19 Links
,”
Mech. Mach. Theory
,
96
(
2
), pp.
75
93
.
17.
Qi
,
X. Z.
,
Huang
,
H. L.
,
Miao
,
Z. H.
,
Li
,
B.
, and
Deng
,
Z. Q.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
139
(
2
),
022302
.
18.
Xu
,
Y. D.
,
Chen
,
L. L.
,
Liu
,
W. L.
,
Yao
,
J. T.
,
Zhu
,
J. L.
, and
Zhao
,
Y. S.
,
2018
, “
Type Synthesis of the Deployable Mechanisms for the Truss Antenna Using the Method of Adding Constraint Chains
,”
ASME J. Mech. Robot.
10
(
4
),
041002
.
19.
Biegus
,
A.
,
2015
, “
Trapezoidal Sheet as a Bracing Preventing Flat Trusses from Out-of-Plane Buckling
,”
Arch. Civil Mech. Eng.
,
15
(
3
), pp.
735
741
.
20.
Miao
,
F.
, and
Ghosn
,
M.
,
2016
, “
Reliability-Based Progressive Collapse Analysis of Highway Bridges
,”
Struct. Safety
,
63
, pp.
33
46
.
21.
Wang
,
M.
,
Li
,
X. Z.
,
Xiao
,
J.
,
Zou
,
Q. Y.
, and
Sha
,
H. Q.
,
2018
, “
An Experimental Analysis of the Aerodynamic Characteristics of a High-Speed Train on a Bridge under Crosswinds
,”
J. Wind Eng. Indust. Aerod.
,
177
, pp.
92
100
.
22.
Shai
,
O.
, and
Pennock
,
G. R.
,
2006
, “
A Study of the Duality between Planar Kinematics and Statics
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
587
598
.
23.
Pennock
,
G. R.
, and
Kamthe
,
G. M.
,
2006
, “
Study of Dead-Centre Positions of Single-Degree-of-Freedom Planar Linkages Using Assur Kinematic Chains
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
220
(
7
), pp.
1057
1074
.
24.
Chung
,
W. Y.
,
2007
, “
Double Configurations of Five-link Assur Kinematic Chain and Stationary Configurations of Stephenson Six-Bar
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1653
1662
.
25.
Wang
,
P.
,
Liao
,
Q.
,
Zhuang
,
Y.
, and
Wei
,
S.
,
2008
, “
Research on Position Analysis of a Kind of Nine-Link Barranov Truss
,”
ASME J. Mech. Des.
,
130
, pp.
0110051
0110056
.
26.
Nicolás
,
R.
, and
Thomas
,
F.
,
2011
, “
Closed-Form Solution to the Position Analysis of Watt-Baranov Trusses Using the Bilateration Method
,”
ASME J. Mech. Robot.
3
(
3
),
031001
.
27.
Nie
,
S. H.
,
Li
,
B.
,
Qiu
,
A. H.
, and
Gong
,
S. G.
,
2011
, “
Kinematic Configuration Analysis of Planar Mechanisms Based on Basic Kinematic Chains
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1327
1334
.
28.
Lee
,
C. C.
, and
Lo
,
C. Y.
,
2013
, “
Movable Focal-Type 7-Bar Baranov-Truss Linkages
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
,
Portland, OR, United States
,
Aug. 4–7
.
29.
Kim
,
S. H.
, and
Cho
,
C.
,
2016
, “
Transformation of Static Balancer From Truss to Linkage
,”
J. Mech. Sci. Technol.
,
30
(
5
), pp.
2093
2104
.
30.
Hahn
,
E.
, and
Shai
,
O.
,
2016
, “
The Unique Engineering Properties of Assur Groups/Graphs, Assur Kinematic Chains, Baranov Trusses and Parallel Robots
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
,
Charlotte, NC, United States
,
Aug. 21–24
.
31.
Ding
,
H. F.
,
Feng
,
Z. M.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2017
, “
Structure Synthesis of 6-DOF Forging Manipulators
,”
Mech. Mach. Theory
,
111
(
5
), pp.
135
151
.
32.
Baranov
,
G. G.
,
1952
, “
Classification, Formation, Kinematics, and Kinetostatics of Mechanisms With Pairs of the First Kind
,”
Proceedings of Seminar on the Theory of Machines and Mechanisms
,
Moscow, Russia
,
2
:
15
39
.
33.
Manolescu
,
N. I.
, and
Erdelean
,
T
,
1971
, “
La determination des fermes Baranov avec e = 9 elements en utilisant la methode de graphisation inverse
,”
Proceedings of 3rd World Congress on Theory Machines and Mechanisms
,
Kupari, Yugoslavia
,
September
, 500,
177
188
.
34.
Yan
,
H. S.
, and
Hwang
,
W. M.
,
1985
, “
Atlas of Basic Rigid Chains
,”
Proceedings of the 9th Applied Mechanisms Conference
,
Kansas City, Missouri, United states
,
Oct. 28-30
.
35.
Yang
,
T.
, and
Yao
,
F.
,
1988
, “
Topological Characteristics and Automatic Generation of Structural Analysis and Synthesis of Plane Mechanisms—Part I: Theory. Trends and Developments in Mechanisms, Machines, and Robotics
,”
Am. Soc. Mech. Eng., Des. Eng. Div.
15
(
1
), pp.
179
184
.
36.
Yang
,
T.
, and
Yao
,
F.
,
1988
, “
Topological Characteristics and Automatic Generation of Structural Analysis and Synthesis of Plane Mechanisms—Part II: Application. Trends and Developments in Mechanisms, Machines, and Robotics
,”
Am. Soc. Mech. Eng., Des. Eng. Div.
15
(
1
), pp.
185
190
.
37.
Yang
,
T.
, and
Yao
,
F.
,
1994
, “
Topological Characteristics and Automatic Generation of Structural Synthesis of Planar Mechanisms Based on the Ordered Single-Opened-Chains
,”
Proceedings of the 1994 ASME Design Technical Conferences. Part 1 (of 3), ASME
,
Minneapolis, MN, United States
,
Sep. 11-14
, ASME, New York, NY, United States.
38.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.
39.
Sunkari
,
R. P.
,
2006
,
Structural Synthesis and Analysis of Planar and Spatial Mechanisms Satisfying Gruebler’s Degrees of Freedom Equation
,
University of Maryland
,
College Park, MD
.
40.
Nie
,
S. H.
,
Liao
,
A. H.
,
Qiu
,
A. H.
, and
Gong
,
S. G.
,
2012
, “
Addition Method With 2 Links and 3 Pairs of Type Synthesis to Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
58
(
12
), pp.
179
191
.
41.
Hahn
,
E.
, and
Shai
,
O.
,
2016
, “
Construction of Baranov Trusses Using a Single Universal Construction Rule
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
,
Charlotte, NC, USA
,
Aug. 21–24
.
42.
Ding
,
H. F.
,
Hou
,
F. M.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2011
, “
Synthesis of a Complete Set of Contracted Graphs for Planar Non-Fractionated Simple Jointed Kinematic Chains With All Possible DOFs
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1588
1600
.
43.
Ding
,
H. F.
,
Huang
,
Z.
, and
Mu
,
D. J.
,
2008
, “
Computer-Aided Structure Decomposition Theory of Kinematic Chains and its Applications
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1596
1609
.
44.
Ding
,
H. F.
,
Zhao
,
J.
, and
Huang
,
Z.
,
2010
, “
The Establishment of Edge-Based Loop Algebra Theory of Kinematic Chains and its Applications
,”
Eng. Comput.
,
26
(
2
), pp.
119
127
.
45.
Huang
,
P.
,
Ding
,
H. F.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2017
, “
An Automatic Method for the Connectivity Calculation in Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
109
(
3
), pp.
195
219
.
You do not currently have access to this content.