Periodic cellular structures with excellent mechanical properties widely exist in nature. A generative design and optimization method for triply periodic level surface (TPLS)-based functionally graded cellular structures is developed in this work. In the proposed method, by controlling the density distribution, the designed TPLS-based cellular structures can achieve better structural or thermal performances without increasing its weight. The proposed technique can be divided into four steps. First, the modified 3D implicit functions of the triply periodic minimal surfaces are developed to design different types of cellular structures parametrically and generate spatially graded cellular structures. Second, the numerical homogenization method is employed to calculate the elastic tensor and the thermal conductivity tensor of the cellular structures with different densities. Third, the optimal relative density distribution of the object is computed by the scaling laws of the TPLS-based cellular structures added optimization algorithm. Finally, the relative density of the numerical results of structure optimization is mapped into the modified parametric 3D implicit functions, which generates an optimum lightweight cellular structure. The optimized results are validated subjected to different design specifications. The effectiveness and robustness of the obtained structures is analyzed through finite element analysis and experiments. The results show that the functional gradient cellular structure is much stiffer and has better heat conductivity than the uniform cellular structure.

References

References
1.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
2.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
J. Mech. Des.
,
139
(
10
),
100905
.
3.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
J. Mech. Des.
,
139
(
10
),
100906
.
4.
Cheng
,
L.
,
Liu
,
J.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Coupling Lattice Structure Topology Optimization With Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
408
439
.
5.
Cheng
,
L.
,
Liu
,
J.
, and
To
,
A. C.
,
2018
, “
Concurrent Lattice Infill With Feature Evolution Optimization for Additive Manufactured Heat Conduction Design
,”
Struct. Multidiscip. Optim.
,
58
, pp.
511
535
.
6.
Bates
,
S. R. G.
,
Farrow
,
I. R.
, and
Trask
,
R. S.
,
2016
, “
3D Printed Elastic Honeycombs With Graded Density for Tailorable Energy Absorption
,”
Active and Passive Smart Structures and Integrated Systems 2016
,
International Society for Optics and Photonics
, Vol.
9799
,
979907
.
7.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
, pp.
187
210
.
8.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2014
, “
Build-to-Last: Strength to Weight 3D Printed Objects
,”
ACM Trans. Graph. (TOG)
,
33
(
4
),
97
.
9.
Li
,
D.
,
Dai
,
N.
,
Jiang
,
X.
, and
Chen
,
X.
,
2016
, “
Interior Structural Optimization Based on the Density-Variable Shape Modeling of 3D Printed Objects
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1627
1635
.
10.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Vol.
1
, pp.
348
362
.
11.
Aremu
,
A. O.
,
Maskery
,
I. A.
,
Tuck
,
C. J.
,
Ashcroft
,
I. A.
,
Wildman
,
R. D.
, and
Hague
,
R. J. M.
,
2016
, “
Effects of Net and Solid Skins on Self-Supporting Lattice Structures
,”
Challenges in Mechanics of Time Dependent Materials
, Vol.
2
, pp.
83
89
.
12.
Steven
,
G. P.
,
1997
, “
Homogenization of Multicomponent Composite Orthotropic Materials Using FEA
,”
Int. J. Numer. Methods Biomed. Eng.
,
13
(
7
), pp.
517
531
.
13.
Xie
,
Y. M.
,
Zuo
,
Z. H.
,
Huang
,
X.
, and
Yang
,
X.
,
2013
, “
Predicting the Effective Stiffness of Cellular and Composite Materials With Self-Similar Hierarchical Microstructures
,”
J. Mech. Mater. Struct.
,
8
(
5
), pp.
341
357
.
14.
Lord
,
E. A.
, and
Mackay
,
A. L.
,
2003
, “
Periodic Minimal Surfaces of Cubic Symmetry
,”
Curr. Sci.
,
85
, pp.
346
362
.
15.
Wu
,
X.
,
Ma
,
D.
,
Eisenlohr
,
P.
,
Raabe
,
D.
, and
Fabritius
,
H.-O.
,
2016
, “
From Insect Scales to Sensor Design: Modelling the Mechanochromic Properties of Bicontinuous Cubic Structures
,”
Bioinspir. Biomim.
,
11
(
4
),
045001
.
16.
Khaderi
,
S. N.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2014
, “
The Stiffness and Strength of the Gyroid Lattice
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3866
3877
.
17.
Michielsen
,
K.
, and
Stavenga
,
D. G.
,
2008
, “
Gyroid Cuticular Structures in Butterfly Wing Scales: Biological Photonic Crystals
,”
J. R. Soc. Interface
,
5
(
18
), pp.
85
94
.
18.
Gandy
,
P. J. F.
,
Cvijović
,
D.
,
Mackay
,
A. L.
, and
Klinowski
,
J.
,
1999
, “
Exact Computation of the Triply Periodic D (‘Diamond’) Minimal Surface
,”
Chem. Phys. Lett.
,
314
(
5–6
), pp.
543
551
.
19.
Rajagopalan
,
S.
, and
Robb
,
R. A.
,
2006
, “
Schwarz Meets Schwann: Design and Fabrication of Biomorphic and Durataxic Tissue Engineering Scaffolds
,”
Med. Image Anal.
,
10
(
5
), pp.
693
712
.
20.
Jung
,
Y.
, and
Torquato
,
S.
,
2005
, “
Fluid Permeabilities of Triply Periodic Minimal Surfaces
,”
Phys. Rev. E
,
72
(
5
),
056319
.
21.
Abueidda
,
D. W.
,
Al-Rub
,
R. K. A.
,
Dalaq
,
A. S.
,
Lee
,
D.-W.
,
Khan
,
K. A.
, and
Jasiuk
,
I.
,
2016
, “
Effective Conductivities and Elastic Moduli of Novel Foams With Triply Periodic Minimal Surfaces
,”
Mech. Mater.
,
95
, pp.
102
115
.
22.
Mahmoud
,
D.
, and
Elbestawi
,
M. A.
,
2017
, “
Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review
,”
J. Manuf. Mater. Process.
,
1
(
2
), p.
13
.
23.
Torres-Sanchez
,
C.
, and
Corney
,
J. R.
,
2009
, “
Toward Functionally Graded Cellular Microstructures
,”
J. Mech. Des.
,
131
(
9
),
091011
.
24.
Han
,
Y.
, and
Lu
,
W. F.
,
2018
, “
A Novel Design Method for Nonuniform Lattice Structures Based on Topology Optimization
,”
J. Mech. Des.
,
140
,
091403
.
25.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
26.
Liu
,
X.
, and
Shapiro
,
V.
,
2016
, “
Sample-Based Design of Functionally Graded Material Structures
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
V02AT03A035
.
27.
Wu
,
J.
,
Wang
,
C. C. L.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput. Aided Des.
,
80
, pp.
32
42
.
28.
Tang
,
Y.
,
Kurtz
,
A.
, and
Zhao
,
Y. F.
,
2015
, “
Bidirectional Evolutionary Structural Optimization (BESO) Based Design Method for Lattice Structure to Be Fabricated by Additive Manufacturing
,”
Comput. Aided Des.
,
69
, pp.
91
101
.
29.
Alzahrani
,
M.
,
Choi
,
S. K.
, and
Rosen
,
D. W.
,
2015
, “
Design of Truss-Like Cellular Structures Using Relative Density Mapping Method
,”
Mater. Des.
,
85
, pp.
349
360
.
30.
Daynes
,
S.
,
Feih
,
S.
,
Lu
,
W. F.
, and
Wei
,
J.
,
2017
, “
Optimisation of Functionally Graded Lattice Structures Using Isostatic Lines
,”
Mater. Des.
,
127
,
215
223
.
31.
Cheng
,
L.
,
Zhang
,
P.
,
Bai
,
J.
,
Robbins
,
J.
, and
To
,
A.
,
2017
, “
Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation
,”
Rapid Prototyping J.
,
23
(
4
), pp.
660
677
.
32.
Wang
,
X.
,
Zhang
,
P.
,
Ludwick
,
S.
,
Belski
,
E.
, and
To
,
A. C.
,
2018
, “
Natural Frequency Optimization of 3D Printed Variable-Density Honeycomb Structure via a Homogenization-Based Approach
,”
Addit. Manuf.
,
20
,
189
198
.
33.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
34.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
35.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
36.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
37.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
J. Appl. Mech.
,
81
(
8
),
081009
.
38.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
39.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
J. Appl. Mech.
,
84
(
1
),
011011
.
40.
Zhu
,
Y.
,
Li
,
S.
,
Du
,
Z.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach Towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids
,
124
, pp.
612
633
.
41.
Xia
,
L.
,
Xia
,
Q.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2016
, “
Bi-Directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review
,”
Arch. Comput. Methods Eng.
,
25
, pp.
437
478
.
42.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
43.
Von Schnering
,
H. G.
, and
Nesper
,
R.
,
1991
, “
Nodal Surfaces of Fourier Series: Fundamental Invariants of Structured Matter
,”
Z. Phys. B Condens. Matter
,
83
(
3
), pp.
407
412
.
44.
Gandy
,
P. J. F.
,
Bardhan
,
S.
,
Mackay
,
A. L.
, and
Klinowski
,
J.
,
2001
, “
Nodal Surface Approximations to the P, G, D and I-WP Triply Periodic Minimal Surfaces
,”
Chem. Phys. Lett.
,
336
(
3–4
), pp.
187
195
.
45.
Ashby
,
M. F.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
,
364
(
1838
), pp.
15
30
.
46.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
2011
,
Asymptotic Analysis for Periodic Structures
,
American Mathematical Society
,
Providence, Rhode Island
.
47.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
48.
Liu
,
L.
,
Yan
,
J.
, and
Cheng
,
G.
,
2008
, “
Optimum Structure With Homogeneous Optimum Truss-Like Material
,”
Comput. Struct.
,
86
(
13–14
), pp.
1417
1425
.
49.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
84
101
.
50.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
J. Appl. Mech.
,
84
(
8
),
081008
.
You do not currently have access to this content.